Print ISSN: 1813-0526

Online ISSN: 2220-1270

Keywords : Silicon Carbide Particles

Effect of Impact Velocity and Angle on Erosion Behavior for Polymeric Composite Materials

Ahmed W. Khalid; Abdullhaqq A. Hamid

AL-Rafdain Engineering Journal (AREJ), 2019, Volume 24, Issue 2, Pages 101-114
DOI: 10.33899/rengj.2019.164326

Due to significant effect of the phenomenon of erosion and its entry in many engineering and industrial applications, hence the importance of the study of erosion, especially the key factors of impingement velocity and impingement angle, because of their high effect on the phenomenon of erosion. The erosion testing device was manufactured according to ASTM G76 specifications, and devices rotating molds casting and vacuum equipment were manufactured, and unsaturated polyester specimens and its composites were reinforced with two types of reinforcing materials silicon carbide particles (SiC) and fiberglass (5 wt. %) and (44%. wt. %) respectively.  The impingement velocity (25.2, 33 m / s) and impingement angles (30°, 60° and 90°) affecting erosion were studied. From the results obtained, it is noted that the behavior of polyester was brittle behavior and the composites behaves semi-ductile. And that the maximum erosion rate of polyester is at an impingement angle (90°) and the maximum erosion rate of polyester composites is at an impingement angle (60°). Silicon carbide particles improved erosion resistance at the impingement angles (90°, 30°), but at an angle (60°) they reduced pure polyester resistance to erosion, while fibers increased the rate of erosion. It was noted that the relationship between the impingement velocity and the rate of erosion is a direct relationship and that the effect of increasing the impingement velocity on the angle of impingement (60°) is greater than its impingement on the angles (90°, 30°).