

Al-Rafidain Engineering Journal (AREJ)

Vol.25, No.1, June 2020, pp. 1-11

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

Voxelization Parallelism Using CUDA Architecture

Sura Nawfal Alrawy Fakhrulddin Hamid Ali
 sura.nawfal@uomosul.edu.iq fhali_a@yahoo.com

Computer Engineering Departementand, Collage of Engineering, University of Mosul

 Received:1/1/ 2020 Accepted:20/2/ 2020

ABSTRACT
The voxelization process is an essential stage in three dimensional (3D) graphics pipeline. Its implementation

should precede displaying objects in the pipeline. In this paper, different Voxelization algorithms are modified and
parallelized to accelerate the operation of this stage. The 3D Digital Differential Analyzer (DDA) algorithm is used for
line voxelization. This algorithm is utilized in triangle filling using the scan-line and the edge-function algorithms. The
first one is designed to produce lines in parallel while the second can produce voxels. All these algorithms are
parallelized using CUDA architecture and implemented on GPU processor. The actual implementation of these
algorithms is examined and optimized according to the occupancy and block size metrics. The experimental results show
that the acceleration amount of 3D DDA was about 4352x max compared to the OpenGL implementation, and the edge

function implementation has been executed at a higher speed than the scan-line for object triangles voxelization.

Keywords:

GPU; CUDA; Edge-function; Parallel implementation; voxelization.

1. INTRODUCTION

Nowadays, as the continuous growth in

3D graphics field, many theoretical solutions have

been proposed to develop and accelerate the

overall graphics pipeline and especially the scan

conversion or rasterization stage. This stage

converts a scene composed of triangle meshes

into a regularly spaced grid points, it is a

computation-intensive process,NVIDIA considers

it as the crown jewel of the hardware graphics
pipeline[1].

The 3D extension of this process is

calledvoxelizationwhich belongs to voxel that is

analogous to thepixel in 2D image space. The

voxelization is accomplished using a 3D scan

conversion to generate a discrete surface of a

voxelizedobject; it differs from scan conversion

that concerns with filling 2D triangles or 2D

projection of 3D triangles[2], their algorithms are

more abundance in literature than a 3D scan

conversion. Therefore we will focus on
explaining 3D scan conversion only.In such

processes the speed is required in

generatingvoxels; some researches accelerated the

operation using the standard Bresenham

algorithm that has been adopted for a long

time[3],[4],[5] and [6]. While other researches

tried to use other algorithms like DDA [7],[8]and

[9]. In[3], the early 3D version of Bresenham

algorithm has been proposed,the algorithm is only

implemented as Simulink using C programming

and the assembly language. Articles [4] and [5]

tried to accelerate the 3D Bresenham algorithm
on FPGA platform, A speed of 68M pixels\sec is

obtained using Spartan3E FPGA kit [4]. While

the authors in [5] have used the Zynq-7000; their

methods involve partitioning each line into

number of segments drawn simultaneously.

However, they test their algorithm to scan few

points and they got a good performance among

other previous works.

Another set of works accelerated the

DDA algorithm for line scan conversion,A multi

symmetry, in certain type of lines, is exploited to
parallelize the scan conversion algorithms [7],

where the line is divided into equal lengths

https://rengj.mosuljournals.com
Email: alrafidain_engjournal1@uomosul.edu.iq
===

ISSN (Print) 1813-0526;
ISSN (Online) 2220-1270

mailto:sura.nawfal@uomosul.edu.iq
mailto:fhali_a@yahoo.com

2 Sura Nawfal Alrawy : Voxelization Parallelism Using CUDA Architecture

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

divisions, The algorithm was proposed to

compute only the first division, and the other
segments simply repeated from this pre-

computation. However, this work has been

applied on certain line orientation (endpoints) and

the overall performance depends on the

probability of a line having multi symmetry.In

2011, a 3D DDA algorithm has been implemented

using FPGA[8]. The unit can produce pixels at a

speed of 120M pixels\sec. assuming the loss of

small time in computing the increment values.

Also, some researches accelerated the

ray traversal method that adopted the 3D DDA
algorithm [9]. The authors used CUDA

architecture on different GPU cards; they get

significant acceleration. McGuire and Mars [9]

presented an efficient implementation for screen

space 3D ray-tracing, their implementation cost

1.2 mille second to render 1920x1080 scene

resolution on NVIDIA GeForce Titan.

In terms of the polygon scan conversion;

some literature has dealt with filling 2D polygons

or the 2D projections of 3D polygons, while the

works that dealt with 3D scan-conversion were

relatively few. The parallelism in these works has
been accomplished using the block-based scan

conversion by partitioning the displayed area into

blocks and processing them simultaneously on

modern multi-core CPU [10],[11]. In [10] the

space area of a triangle is partitioned into 8x8

blocks then the 3D scan conversion is applied

from the top left corner to the bottom. The

researchers implemented the algorithm using

Handel-C then translate it into VHDL code to

verify the design using ModelSim. In this method

some blocks would be empty making the
corresponding threads remain idle many times.

This problem was dealt with in [11] to reduce the

effect of empty blocks and unnecessary

calculations by combining two methods adaptive

and bisector algorithms. They tested their

implementation on Head and Statue models

having 600,000 vertices with five different cases

according to the distance from the camera, the

maximum FPS obtained was about 564 frame\

sec.

NVIDIA proposed an efficient CUDA-

based rendering model [1], where a complete
software rasterization pipeline has been

implemented on a GPU. They tiled the triangle

primitive and made each warp rasterize a single

triangle; the performance of which is a factor of

2-8x compared to the hardware graphics pipeline.

The 2D scan line method for triangle

rasterization has been used in [12] and [13]. The

researchers implemented the algorithm on FPGA,

the maximum speed obtained in [12] is about

50M pixel\sec., using the classical 2D scan-line

algorithm. While the work in [13] has improved
the 2D scan conversion by using the midpoint

traversal which reduces the number of

unnecessary points need to traverse, the

performance results on different triangle

orientations show the efficiency of this method in

comparison with other methods, such as

Bounding Box Traversal, Central-line Traversal,

and Tiled Traversal.

Although these works can apply

rendering algorithms, the performance is still not

satisfying compared to the power of the current
GPUs and it needs more improvements especially

after the graphics vendors began to provide

programmability at different stages after they

were fixed units on chips.However, more

acceleration is needed to improve the

performance by implementing the algorithm

efficiently in parallel manner.

In addition to this introduction, this

paper contains four other sections. Section 2

presents the theoretical bases of the work. The

proposed parallel voxelizationis fully explained in

section 3. The obtained results and their
corresponding discussions are included in section

4. Finally, section 5 concludes this paper.

2. THE THEORETICAL BASES

The voxelization takes advantage of the

spatial or coherence property in an object has to

be displayed. This property means that one part of

the object is related to another part of that object

in some way. So this relationship is used in voxel

calculation to reduce the processing, where only

the end vertices for line, or the three vertices for a
triangle, are stored and the scan conversion can

create the whole needed voxels for single scan

line or between successive scan lines[12].

In this section, the related theory of a

straight line and a triangle voxelization is

introduced with their sequential algorithms.

2.1 3D line voxelization

There are two standard algorithms for

3D line scan conversion, Bresenham and DDA

algorithms[14].In this paper the DDA algorithm is

presented. The implementation of itis done by
linear interpolation of variables over an interval

between start and endpoints. It needs a floating

point operation in its computations. The 3D

version is accomplished by considering the line

segment whose voxels require to be generated in

3D space, so for each voxel, the z value is

calculated in addition to the x and y values,

hence, the algorithm works in object space rather

than in image space.

Sura Nawfal Alrawy :Voxelization Parallelism Using CUDA Architecture 3

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

The sequential DDA scans a line vertex

after anotherbased on calculating either dy or dx
differences. It can work on lines with different

slopes less or great than one as well as the

positive or negative slops. Simply the line

equation with slope is exploited here, as (xn=xn-

1+m) so, all the voxels that belong to this line

should satisfy this equation. Same calculations are

carried out to determine voxel positions at each

coordinate then the same process is repeated

along the line. Therefore three slopes should be

calculated, one for each coordinate and one of

them would be equal to one and the others may be
less or great than one due to the line type.

2.2Polygonvoxelization
The 3D object is already stored as a

polygons mesh, a triangle is considered as a

fundamental primitive in most modern GPU cards

since any polygon can be divided into many

triangles[1],[14].So the triangle scan conversion

is treated in this paper. The scan conversion of a

triangle involves filling all area bounded by its

edges and lie inside its boundaries. Therefore, this

stage should be implemented carefully to render
the whole object in 3D space in a correct manner.

This process can be categorized into two main

approaches;scan-line and edge function

approaches[12],[14], both are based on the

previous line scan conversion algorithms.

2.2.1 Scan-line algorithm

This algorithm is considered a classical

version that is still in use, since it offers an

efficient triangle traversal by walking through the

triangle from top to bottom and digitalizes
successive horizontal line by another. Each line is

called scan-line, and the internal part of a scan

line is called span. This method is also called

edge walking or fast scan conversion algorithm.

Fig.1 shows two successive spans of a triangle

where each one has a constant y value.

Fig. 1 A polygon scan conversion (up to down) k: is a

scan line number

The 3D scan-line is extended from the

2D version, where at each span the z dimension is

also interpolated. We can explain this method by

partitioning it into four steps.

i) Vertices sorting

Firstly the triangle vertices (v1, v2, v3)

should be sorted according to its y values from
least to most in a clockwise direction; this is to

distinguish the top, middle and bottom vertices.

The sorting of the vertices is made independently

of the z values and it sorts the triangle sides

themselves.

ii) Slopes calculation

After the triangle edges are sorted along

the y-axis, the slope of each triangle edge can be

found from the line formula by[14]:

Where: i :is the triangle vertex counter from 0 to

2.

There are three slopes should be calculated for

three edges, these slopes are needed to voxelize
the triangle sides, and thereby the whole span

points, where these intersections represent the

start and end points of the span. The slope

transition is needed when the span reaches to v2

vertex, as in Fig.1, where edge 1 should be

dispatched by edge 2 and its slopes will be

considered in span end calculations.

In 3D scan conversion, the z increment should be

calculated for each span line using the

equation[14]

iii) Finding the scan line intersection

To move down from span to another, we

should find the intersection of the scan line with

triangle boundaries. The (x,y,z) coordinate can be

calculated based on the previous slope values.

The change in y coordinate between two

successive spans is one step as the equation:

While the new intersection x and z

values are determined by the x, y intersection

values of the preceding span xk, zk as[14]:

Where each successive (x, y) intercept

can thus be calculated by adding the inverse of

v1 yk+1
yk

yn

v2

v3

edge 3

edge1

edge2

4 Sura Nawfal Alrawy : Voxelization Parallelism Using CUDA Architecture

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

the slope, noting that the slope may be negative or

positive depending on which is greater (xk+1 or xk
) or (zk+1 or zk). So each time we move to a new

span, the x and z values can be incremented or

decremented based on the reciprocal value of the

slope.

In Fig.2, one can note that the middle

span, which passes through the middle vertexv2,

can separate the triangle into two parts top and

bottom. So a slope transition is needed at this

span where one of the slopes should be changed

making the procedure having two different loops,

each of them with different span number
according to the current active edges. Two cases

are produced here according to the orientation of

the triangle where the position of the second

vertex v2 may be to the left or to the right of other

vertices as shown in Fig.2.

Simply, the number of spans can be

represented by the difference between the y-

coordinates (dy) of the two ends of a triangle

edge[2],[14]:

Here, only the two smallest dy of a

triangle are needed, where the third one represents

the sum of these two differences.

Whenever the counter value for

calculating the spans of the first part becomes

equal to or greater than dy, we switch to another

counter and one of the edges is removed from the

active edges and replaced by another. Thereby,
we increment or decrement the current x and z

intersection depending on the sign of the new

slopes and increment the y coordinate by one,

then the counter is increased by one till reaching

the second dy spans.

Fig.2 Span line intersections

iv) Filling the span

After finding the intersections of each

scan-line with the current active triangle sides, the

end and start points of the span are being

provided and here, we further decompose the span

into pixels using one of line scan conversion

algorithms to fill in the span. The 3D DDA is
used in this paper,it produces pixels which are

filled in between the pairs of intersections

horizontally from left to right.

2.2 Edge function testing

Edge function is a linear function that

can be used to classify points on a plane

according to its location, showing if the voxel lies

above, on, or below the vector. Some sources

refer to this method as a half-space function since

it divides the region into two halves based on the
considered edge, and others refer to it as a

bounding box since it checks all the voxels in the

bounded box surrounding a triangle [11],[13].

An edge function is defined by

computing the perpendicular dot product

PerpDotbetween a vector and the perpendicular

one of the other vector and passes through the

tested point [13].

Fig.3 explains this process where the

edge function is the implicit equation,
 , of the vector through the two points A and
B.

.

Fig.3 Edge function representation

So the PerpDot product can be applied

on ̅̅ ̅̅ ̅ and ̅̅ ̅̅ ̅ as followed[13]:

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Where P(x,y) is the tested point and the
perpendicular vector on AB is shown as the

normal ̅ which has an inverse slope of AB,

therefore the final edge function can be written

as[11]:

So the function yields three possible outputs

based on the input point P(x, y):

- E(x, y) = 0 if point P is on the line.

- E(x, y)> 0 if point P is above the line in the

same direction of the normal.

- E(x, y)< 0 if point P is below the line in
the opposite side of the normal.

Span_max

Span_min

Span_min

dx2

V1

V3

V2

dx3

dx1

Span_max

V2

V3

dx3

dx1

dx2

V1

Sura Nawfal Alrawy :Voxelization Parallelism Using CUDA Architecture 5

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

In triangle rasterization, there are several

mathematical approaches to find the inner pixels
and they all investigate the question of how to

represent edges. Exploiting the edge function in a

triangle rasterization involves checking each point

inside the triangle against all its three edges as

shown in Fig.4.

Fig.4 Triangle edge equations

Therefore, for each point there should be

three edge equations. In general, a pixel could be

inside the triangle if and only if the results of all
the three functions are greater or equal than zero,

otherwise, the pixel lies outside the triangle.

Surely, the method would not be

effectual if all the pixels in the screen are tested,

so the bounded box is used to limit the tested

voxels as shown in Fig.4. This box is specified

according to the minimum and maximum triangle

coordinates values.

However, the above rasterizer requires

many calculations for each per-pixel, three times

of (three multiplications and eight subtractions as

a 3D space). So optimization has been added to
this approach [13] using the DDA method to find

the neighboring pixels; this is to reduce the

computations of the three coordinates. Thus, once

the edge functions have been created and

evaluated for a sample point, any of the four

neighboring pixels can be evaluated using simple

additions/subtractions operation. Another

optimization on this algorithm has been proposed

in [15] using the tile-based approach which is

considered in some modern graphics card.

3. THE IMPLEMENTATION OF PARALLEL

VOXELIZATION

In many 3D scene fillings, the process is

performed voxel by voxel. Although mapping the

vertex and the process of line traversal seem to be

simple, the scan conversion performance largely

depends on the implemented algorithm and its

optimization level. It has a large number of

individual visibility tests between the voxel and a

triangle, so the algorithm iterations having many

calculations need to be executed many times.

Such algorithm requires more efforts to make it
parallel and optimized at the same time, taking

the possibilities of the GPU hardware into

account and how to adapt it onto CUDA

(Compute Unified Device Architecture)
programming model. In this section, we intend to

explore how far our voxelization implementation

can be achieved in terms of performance on

CUDA.

3.1 GPU-based line segment algorithm

With a parallel computer, we can find

voxel positions along a line path simultaneously

by separating the computations among the

available streaming processors. This section

shows how to modify scan conversion methods
for 3D lines so that they can run on a parallel

computer.

As discussed previously, there are two

main serial algorithms for straight-line scan

converting: DDA and Bresenham. The

Bresenham’s algorithm has become common

because of its integer arithmetic operations since

oldest processors could not easily do floating-

point arithmetic. There were no floating-point

math and no multiply\divide. This was thousands

of times slower than doing simple integer

arithmetic [9].
Nowadays, all processors (GPUs or even

CPUs) can do SIMD (Single Instruction Multiple

Data) operations and they use floating-point

vector extensions. The current GPUs support both

integer and floating-point operations, and they

consume the same number of clock cycles for

both integer and float operation [16]. Hence, the

obstacles of unusing the DDA algorithm have

vanished, so we expected that the DDA is more

suitable for parallel implementation than the

Bresenham algorithm.
The rasterization of a 3D line was not

easy to implement as initially thought. Firstly, we

tried to parallelize the Bresenham algorithm, but

we found that this algorithm has more branches

and dependency in its instructions. The creation

of new voxel depends on the error value which is

accumulated from other preceding voxel

calculation. It changes under the condition if it is

greater or less than zero, therefore, its

implementation is difficult as SIMD. This

difficulty can be dissolved by partitioning the line

into many segments having the same slope and
hence each thread could tackle one of these

segments. However, this solution increases the

sequential execution and costs more calculations

in each thread. Many researches have been

proposed to parallelize the Bresenham

algorithm[4], but their solution lacks for physical

hardware or their implementation deals with small

data set [6].

6 Sura Nawfal Alrawy : Voxelization Parallelism Using CUDA Architecture

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

Indeed, we exploited the benefits of

parallelization in efficient
implementation,wherethe problem that can be

divided into independent sub-problems is more

suitable.Thereby, we prefer the (DDA) algorithm

for the implementation on GPU. The arithmetic

operations in the DDA are more suited to the

GPU because the inner loop, as presented

previously, contains independent instructions and

need less modification than Bresenham to be

parallelized and properly hardware-implemented

and scalable.

The parallel 3D DDA algorithm is
designed by forming a Multiply-Add operation

(FMUL) in its inner loop as follows: the start-end

voxel is used in all processors instead of

calculating the previous voxel at each step, since

in parallel implementation recalculating the value

is easier and less expensive than rereading it from

global memory. The pseudo code of the

implementedalgorithm is listedin Fig.5.

Procedure of parallel 3D Line-voxelization

BEGIN

blockId = blockIdx.x + blockIdx.y *

gridDim.x;

i = blockId * (blockDim.x *

blockDim.y) + (threadIdx.y *

blockDim.x) + threadIdx.x;

Length = abs(x2 – x1)

if (abs(y2 – y1) > Length) Length =

abs(y2 – y1)

incx=(x2 – x1) / Length

incy=(y2 – y1) / Length

incz=(z2 – z1) / Length

For each thread (i)

Begin

 x = x0 + incx*i

 y = y0 + incy*i

 z = z0 + incz*i

store_voxel_float4(x, y ,z, 1.0f)

End

END

Fig.5 The pseudo code for parallel 3D-line voxelization

The indexing configuration of grid and

block entries is architected using the built-in

variables threadIdx and blockDimin the CUDA

runtime, where the coordinate of each thread can

be accessed within kernel function by the

variablei.

3.2 GPU-based 3D triangle voxelization

The scan-line and edge-function

algorithms are optimized based on the parallel

implementation; both are executed for triangle

primitive. In the sequential procedure of those

algorithms we found that there is no dependency

in its instructions and thereby their procedure can

be parallelized with some modifications. The

performance of the filling process largely depends

on the executed algorithm and its optimization
level. Different configurations are tested in this

paper to parallelize these algorithms; each of

them is discussed as follow:

3.2.1 Parallel scan-line algorithm

The parallelization of this algorithm is

more complex than the edge-function since it has

two nested for-loop. So, it can’t be parallelized

for each pixel, instead, we implemented the

parallelism for each scan-line. Each thread is

responsible for drawing single span but in this
case a sequential loop exists for scanning the

horizontal line, and here the largest span will

depend on the orientation of a triangle. This can

be inefficient for large triangle size where the

span will be long and which will increase the

consumed time to rasterize it. Actually, in real

implementation and for high resolution, all the

triangles of an object are of being with small

sizes. Locality coherence states that (the triangle

size decreases as the number of triangles in a

scene increases). Therefore, this algorithm is still

being in use especially in low end consumer
devices like handhelds.

The following pseudo-code in Fig.6

illustrates the parallel triangle voxelization,

Procedure parallelvoxelizationscan-line

algorithm

BEGIN

Enter the clockwise vertices of the

Triangle

blockId = blockIdx.x + blockIdx.y *

gridDim.x;

i = blockId * (blockDim.x *

blockDim.y) + (threadIdx.y *

blockDim.x) + threadIdx.x;

For each thread (i)<dy1

Begin

//compute the intersections of the

current scan line (spani.x,spani.z)

with the left and right sides of

the triangle;

span_min=span_max=v;

span_min.x=v.x+ 1\dx1*i

span_min.z=v.z + 1\dz1*i

span_max.x=v.x + 1\dx2*i

span_max.z=v.z + 1\dz2*i

zinc = (span_max.z – span_min.z)/(

span_max.x - span_min.x);

for(; span_min.x<=span_max.x ;

span_min.x+=1)

store_voxel_float4(span_min.x,v.y + i

, span_min.z + zinc*i, 1.0f)

End

END

Fig.6 The Pseudo code for parallel 3D-triangle
voxelization using scan-line approach

Sura Nawfal Alrawy :Voxelization Parallelism Using CUDA Architecture 7

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

The important issue that should be

mentioned here is that there are two

configurations after sorting the sides of the

triangle, as previously shown in Fig.2, one of

them if the middle vertex is on the right and the

other when it is on the left. A simple condition is

added to the algorithm to distinguish these two

configurations where the dx values of the active

sides are checked to begin the span with the

smallest dx and end it with the largest one. The

procedure below takes one case when dx1 is
smaller than dx2. One part is introduced below if

one of the triangle sides is a horizontal line or

parallel to the scan line.

3.2.2 Parallel edge-function algorithm

The edge function implementation is

accomplished by distributing the voxels among

the available threads. It is more suitable for

parallel implementation than the previous
approach, since it can be applied on each voxel as

SIMD, but in such a case more threads are

needed, than the previous algorithm, due to the

bounded box, where only the voxels inside the

triangle are drawn and those voxels outside the

triangle and inside the box aren’t drawn although

they seize threads and consume an extra

processing time.

The following pseudo code in Fig.7

explaines the implementation of this

algorithm,where the threads configuration is
arranged as (x,y,z) so, each thread coordinate

should be compared in the three edge functions,

that are extended here as a 3D space, to return the

decision of display the voxel or not.

Procedure parallel voxelizationedge-

function algorithm

Enter the clockwise vertices of the

Triangle (A,B,C)

BEGIN

x = blockIdx.x*blockDim.x +threadIdx.x;

y = blockIdx.y*blockDim.y + threadIdx.y;

 z = blockIdx.z*blockDim.z + threadIdx.z;

map the threads coordinates to the

triangle coordinates

for each thread

Begin

e1=(A.x-B.x)*(y-A.y)-(A.y-B.y)*(x-

A.x)-(A.z-B.z)*(z-A.z);

e2=(B.x-C.x)*(y-B.y)-(B.y-C.y)*(x-

B.x)-(B.z-C.z)*(z-B.z);

e3=(C.x-A.x)*(y-C.y)-(C.y-A.y)*(x-

C.x)-(C.z-A.z)*(z-C.z);

if (e1>=0 && e2>=0 && e3>=0)

 store_voxel_float4(x, y ,z,

1.0f)

End

END

Fig.7 The pseudo code for parallel 3D-triangle
voxelization using scan-line approach

In general, a voxel could be inside the

triangle if and only if the results of all the three
functions are greater or equal than zero,

otherwise, the voxel lies outside the triangle.

The advantages of this algorithm include

simple logic and high precision, yet it has

relatively low efficiency since it needs more

threads.

4. RESULTS AND DISCUSSIONS

To evaluate the performance of parallel

voxelization, the implementation isrealized on

GPU using NVIDIA CUDA architecture, this
architecture is chosen due to hardware availability

and experience with this technology.

The parallel testsare implemented on

personal computer having Intel® CoreTM i7

processor with one NVIDIA GeForce 1050 GTX

of compute capability 6.1.This processor contains

five SMs (Streaming Multiprocessors), with each

of them 128 SPs (Stream Processors) and the

maximum memory data rate (112 GB/s).All

applications are designed in CUDA version 9.2

using CUDA/C++ languages on visual studio

environment.
The obtained results of parallel

voxelization algorithms are discussed in this

section. They are partitioned into two parts: the

first one for line and the other for triangle

voxelization, each of which iscomparedwith

sequential and other previous worksresults in

addition to the OpenGL implementation on GPU

itself. These results of parallel implementation

are optimized according to the block sizes and the

occupancy metrics using the NIVIDIA profile and

Nsight tools.

4.1. GPU-based 3D DDA results

In this section, we implement the parallel

3D DDA algorithm as described in section (3.1).

The algorithm is applied on different sizes of 3D

data from a starting point (0,0,0) to a maximum

length as an endpoint where different lengths are

used. The resulting line in the 3D space can be

moved by the mouse in different orientations.

In the three different implementations

sequential, OpenGL and parallel,the

measuredtime and FPS metrics are listed in
Table.1. These times are measured in

microseconds and the block size for CUDA

implementation is set to 8x8 in this test. As can be

seen from the table, the calculation time depends

on the data size. Also the sequential

implementation (voxel by another) could not be

able to process large data set but the openGL

could, while the CUDA program can implement

more than four million voxel, it is suitable for

8 Sura Nawfal Alrawy : Voxelization Parallelism Using CUDA Architecture

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

intensively high computing program. The table

also shows the speedup of CUDA over OpenGL
implementation where a significant factor is

gained.

Table 1:Execution times in (µ seconds) and speedup for

3D DDA implementations

Voxels

number
Seq. OpenGL CUDA

Speedup

CUDA\

Seq.

Speedup

CUDA\

OpenGL

1 024 4 720 8 978 2.06 847.70X 4352X

4 096 16 971.4 9 920 2.372 1756.14X 4132X

65 536 256 359s 16 987 11.616 3864.55X 1462X

262 144 8 829 333 44 914 42.464 36 133X 1058X

1 048 576 --- 158 575 165.21 ----- 960X

4 194 304 --- 598 399 656.35 --- 912X

From the performance analysis in the

profile (nvprof), we found that the executable

kernel hits the peak theoretical bandwidth, where

the achievable bandwidth for this kernel is about

94.6GB/sec that is close to the effective

bandwidth of this device (112 GB\sec) and it hits

the reasonable bandwidth target which is about

94.616 GB\sec. So there is no more optimization
could be done to improve the performance since

the kernel reaches to memory bounding.

4.1.1 Effect of varying the block size

In this work, a block size is chosen due

to some experience and considering NVIDIA

profile (nvprof). The benchmarking of this factor

is explained here to enhance the overall GPU

performance and to investigate how threads are

distributed among the available processors. The

results in Fig.8are extracted from the profile

report when implementing the 3D DDA on data
size of 65536 vertices. The left figures show

varying theoretical active warp with the block

size. It is evident from the figure that the red

circle points to the current block size (8x8), if the

chart goes higher than this circle point, this means

that the selected value is not suitable, and the

performance can be improved by increasing the

block size. This increasing could subsequently

increase the active warp per SM that in turn

increases the occupancy.

(a) (b)

Fig.8 Parallel performance for 65536 voxels using 8x8
threads (a) Effect of varying block size on warps per SM

(b)The achieved occupancy

As can be seen from Fig.8, the 8x8

threads achieved the highest warp per SM (64

warp or 2048 threads for this type of GPU) so it is

a good choice. While the 4x4 block size, holding

other parameters constant, made the max warp per

SM equal to 32 only, resulting in low occupancy.
We will explain the occupancy factor in details

next section.

The other block sizes of the 512, 256,

128 threads are also tested (as 1D, 2D or 3D

configurations). They approximately gave the

same performance and nearly achieved identical

occupancy as 64 block size, whereas the 1024

threads operate with less occupancy. Although

this larger size reduces memory fetches, but the

reason is that the SM cannot process more than

two blocks at a time. However, the execution time

just slightly increases as benchmarked in Table.2.
In general, the highest block size needs too many

resources to execute a block, so, it consumes

more time. The new thread block may wait to get

a resource; thereby the SM may be unable to

cover the latency of memory accesses.

Table.2: Effect of different block sizes on the

execution time

In the previous table, the execution times
for few voxels approximately remained constant

till the voxels occupy all the SMs in the GPU. For

Data size

Exe. Time (µ sec.)

Block size

(1024 threads)

Block size

(256 threads)

Block size

(16 threads)

1024 2.240 1.952 2.208

4096 2.240 2.270 3.168

16384 3.648 3.616 7.040

65536 11.808 11.649 22.112

262144 42.592 42.496 81.792

1048576 165.248 165.184 320.023

4194304 656.351 656.255 1274.91

Sura Nawfal Alrawy :Voxelization Parallelism Using CUDA Architecture 9

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

example, when the number of voxels is 1024,

only one block of the 32x32 threads can reside on
one SM. Therefore, the GPU is not a suitable

target for small data size compared to other

platforms; it needs more data to exploit the power

of GPU. While when a (16x16) block size is used,

it means that there are enough threads per block

to provide hardware with many warps to switch

between,

4.1.2 Effect of the occupancy factor

The occupancy metric is also measured

for different block and data sizes as shown in
Fig.9, where three different block sizes are

examined. This factor describes the ratio of

executed active warps on the SM to the maximum

possible number of active warps that SM can

support[17].The 1050 GPU type has five SMs and

each one can operate on 2048 threads. So the

work of the voxelizing is partitioned by how each

SM could be occupied by active blocks[18]. As

can be seen from Fig.9, increasing the block size

could subsequently increase the active warp per

SM that in turn increases the occupancy to about

80%. Whereas the (32,32) threads operate with
less occupancy, because the SM cannot process

more than two blocks at a time and needing more

resources reduced the active warps.In general, the

occupancy metric is affected by two factors, the

block size and the workload given by the data

amount.

Fig.9 Percentage of achieved occupancy using different
block size on various data size

After explaining this optimization, the

optimal amount of threads per block can be 64 or

256 threads configurations which gave the higher
performance. Using the (16x16) 256 threads, the

average warps per each SM are indicated in

Fig.10 as 65536/2048/5SMs =409.6 threads. SM1

and SM3 launched fewer warps compared to

others. The utilization of the SMs (SM activity)

according to this configuration is nearly 100%

and the hardware waste is low.

Fig.10 3D DDA kernel statistics of warps launched and

SM activity (16x16 block size, 65536 voxels)

4.2. Parallel 3D triangle filling results

In this experiment, the 3D triangle filling

is tested on fixed size triangle using both scan-

line and edge function method. In scan-line

method (start and endpoints approach) each

thread could compute single span of different

number of voxels, while in the other method,

more threads are occupied to fill the same area of

triangle thereby it consumes less time. Not all of
these threads achieve the three conditions of the

edge function that determines which location to

fill, so the number of displayed voxels is less than

the number of the executed threads. The 3D

indexing is used here (GPU 1050 supports this

feature) where the thread coordinates x, y and z

direction are checked in the edge function

equations.

The results are recorded in Table.3,

where the execution time and the FPS for these

methods are compared. The block size is set to

16x16 threads and the mesh size (number of
threads) is set according to the dy value of a

triangle approximated to multiple of 32. The

output triangle has about 16384 voxels.

Eventually, the parallel implementation

outperforms the OpenGL and the sequential

execution, the acceleration factor is about 247x

for the scan-line and 4238x for the edge function

method with respect to OpenGL execution. This

demonstrates the more parallelism that inspired

the second method and how it was adapted well

as parallel configuration.The maximum
throughput is about 4500 M voxel/sec.

On the contrary, the scan-line filling is

executed with a sequential portion to draw a

single span. Hence, the execution depends on the

thread with longest span since the spans are

different in their lengths, so the throughput is

decreased to about 69M voxel\sec.

Table 3: Performance of triangle filling methods

Scan line Edge function

Exe time

(µ sec.)
FPS

Exe time

(µsec.)
FPS

Sequential 303 878.720 3.3 90 654.912 10.1

OpenGL 58 438.23 30.2 16 954.112 59.4

Parallel 236.256 929.2 4.001 1068.2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

O
cc

u
p

a
n

cy

data size

Block size

(32,32)

Block size

(16,16)

Block size

(4,4)

10 Sura Nawfal Alrawy : Voxelization Parallelism Using CUDA Architecture

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

In 3D space, the orientation of a triangle

is an important factor that determines the number

of voxelized vertices even if the triangulation

process for volumetric representation forms the

surface as equilateral triangles. The maximum

filling voxels are displayed when the viewing

angle is perpendicular on the triangle plane.

Therefore the execution time is changed

according to this viewing angle.

4.3 Comparison with previous works

Although not many resources that relate

to this work, the results of the voxelization are

compared to the algorithms that are implemented

on other platforms even if it used a 2D version

scan conversion. These algorithms are also tested

to render only few pixels. Table.4 presents

comparison of line drawing with other previous

works. These works tested their algorithms on

small data size of only one thousand vertices. In
our implementation the rasterization of up to

10240 voxels consumes about 2.41 micro seconds

making the throughput of about 4 G voxel\sec.

For triangle rasterization, the best

implemented algorithm (edge function) is

compared with other accelerated algorithms that

have been realized on different platforms as

FPGAs. The same triangle size is used for

comparison although these algorithms are

implemented as 2D version. Table.5 shows the

execution times in (µ sec) consumed for triangle

rasterization. Our GPU voxelization costs the
least time compared with other algorithms. It

approximately remains constant for all the three

compared sizes, since these sizes are considered

so small to fill the GPU processors and to utilize

its efficiency.

Table 4: Execution times of line drawing compared to

other works

End

coordinates

Operating

environment
exe.time

throughput

voxel\sec

[6] 3D

2018
(992, 992, 992)

ZyboSoC

board
0.31μs 3.20 G

[5] 3D

2013

(1000, 1000,

1000)

Spartan 3E

FPGA
13.16μs 73.5 M

[5] 3D

2013

(1000, 1000,

1000)

Spartan 3E

FPGA
14.71μs 68.0 M

[4] 2D

2011
(1000, 1000)

Personal

computer
1.25ms 0.8 M

[19] 2D

2010
(1000, 1000)

Personal

computer
1.36ms 0.73 M

[Current]

2019

(10240, 10240,

10240)
GeForce 1050 2.41 μs 4.24 G

Table.5: Triangle filling time (µ sec.) comparison with
previous works

Algorithm

v0(100,30)

v1(10,100)

v2(20,80)

v0(50,20)

v1(100,100)

v2(10,100)

v0(10,20)

v1(80,50)

v2(50,100)

[15] 2009

Tiled traversal
18.895 59.995 41.665

[20] 2010

Central traversal
9.204 40.332 29.300

[21] 2011

Midpoint traversal
8.764 40.112 25.745

Current work 3D 2.419 2.461 2.413

5. CONCLUSION
In this paper, the acceleration of

voxelization unit has been achieved using parallel

techniques, where many voxels have been

produced at a time. The acceleration amount of

the parallelized 3D DDA was about 4352x max

compared to the OpenGL implementation that

also uses parallel technique in its execution. In

triangle filling, the scan-line algorithm cannot

easily parallelize to compute many voxels at a

time. It is more difficult than the edge-function

approach since it operates per line instead of per
voxel parallelization. However, the maximum

throughput of parallel 3D DDA implementation

was about 4.24 G voxel \sec.In terms of triangle

voxelization, 4.5G vertex\sec. was obtained in

edge-function parallel implementation and about

69M vertex\sec. was the throughput for the scan-

line implementation.

Finally, the parallel implementation has

been optimized many times to get these

results.We can conclude that more threads in

blocks donot lead to higher occupancy; there must

be other factors that restrict performance. At the
same time, a higher occupancy does not always

achieve good performance since it may increase

the memory controller connections, therefore the

benchmarks is needed to choose the best for a

given case and a given hardware type.

REFERENCES
[1] S. Laine and T. Karras, “High-performance

software rasterization on GPUs,” in
Proceedings of the ACM SIGGRAPH
Symposium, 2011, p. 79.

[2] J. Vince, Mathematics for Computer Graphics,
Second., vol. 53, no. 9. UK: Springer-Verlag
London Limited, 2013.

[3] X. W. Liu and K. Cheng, “Three-dimensional
extension of Bresenham’s algorithm and its
application in straight-line interpolation,” Part
B J. Eng. Manuf. SAGE Journals, vol. 216, no.
3, pp. 459–463, 2002.

[4] L. Yan-Cui, H. Jin-Yan, L. Shi-Yong, and Y.
Xia, “A straight line generation algorithm
based on line pixels,” Proc. - 2011 IEEE Int.

Sura Nawfal Alrawy :Voxelization Parallelism Using CUDA Architecture 11

Al-Rafidain Engineering Journal (AREJ) Vol.25, No.1, June 2020, pp. 1-11

Conf. Comput. Sci. Autom. Eng. CSAE 2011,
vol. 4, pp. 466–469, 2011.

[5] B. Mohammed and K. Younis, “Hardware
Implementation of 3D-Bresenham ’ s
Algorithm Using FPGA,” Tikrit J. Eng. Sci.,
vol. 20, no. 2, pp. 37–47, 2013.

[6] S. Ismae, O. Tareq, and Y. T. Qassim,
“Hardware / software co-design for a parallel

three-dimensional bresenham ’ s algorithm,”
vol. 9, no. 1, pp. 148–156, 2019.

[7] M. Khairullah, “An Analysis of Scan
Converting a Line with Multi Symmetry,” Int.
J. Comput. Appl., vol. 61, no. 15, pp. 30–33,
2013.

[8] F. H. Ali, “Depth Buffer DDA Based on
FPGA,” Al-Rafidain Eng., vol. 19, no. 5, pp.

10–12, 2011.
[9] M. Mcguire, “Efficient GPU Screen-Space

Ray Tracing,” J. Comput. Graph. Tech., vol.
3, no. 4, pp. 73–85, 2014.

[10] Y. Yan, J. Zhou, and C. Zheng, “Design and
implementation of 3D scan conversion
algorithm based on Handel-C,” Proc. - 2010
Int. Conf. Anti-Counterfeiting, Secur.

Identification, 2010 ASID, pp. 146–149, 2010.
[11] P. Mileff, K. Nehéz, and J. Dudra,

“Accelerated Half-Space Triangle
Rasterization,” Acta Polytech. Hungarica, vol.
12, no. 7, pp. 217–236, 2015.

[12] Fakhraldeen H. Ali Amar I. Dawod, “Fpga
Design And Implementation Of A Scan
Conversion Graphical Sub-System,” J. Al-

Rafidain Eng., vol. 16, no. 4, 2007.
[13] X. Wang, F. Guo, and M. Zhu, “A More

Efficient Triangle Rasterization Algorithm
Implemented in FPGA,” in Proc. ICALIP
IEEE, 2012, pp. 1108–1113.

[14] E. Lengyel, Mathematics for 3D Game
Programming and Computer Graphics, Third
Edit. Course Technology PTR, 2012.

[15] R. Rd, “Universal Rasterizer with Edge
Equations and Tile-Scan Triangle Traversal
Algorithm for Graphics Processing Units,” in
ICME 2009 IEEE, 2009, pp. 1358–1361.

[16] NVIDIA, “NVIDIA CUDA C Programming

Guide Version 3.2,” httpdeveloperdownload
nvidiacomcomputecuda 31toolkitdocs
NVIDIACUDACProgrammingGuide 31pdf,
pp. 1–170, 2010.

[17] NVIDIA, “NVIDIA Nsight Visual Studio
Edition 2019.3 User Guide,” 2019. [Online].
Available: https://docs.nvidia.com/nsight-
visual-studio-

edition/Nsight_Visual_Studio_Edition_User_
Guide.htm.

[18] NVIDIA, “GeForce GTX 1050 Graphics
Cards | NVIDIA GeForce.” 2018.

[19] S. Zhong, Niu Lianqiang, “A Fast Line
Rasterization Algorithm Based on Pattern
Decomposition,” J. Comput. Des. Comput.
Graph., vol. 53, no. 9, pp. 1689–1699, 2013.

[20] Y. Ma, X. Wang, M. Zhu, and W. Wan,
“Rasterization of geometric primitive in
graphics based on FPGA,” ICALIP 2010 -
2010 Int. Conf. Audio, Lang. Image Process.
Proc., pp. 1211–1216, 2010.

[21] H. Jiang, X. Wang, M. Zhu, W. Wan, and Y.
Ma, “A novel triangle rasterization algorithm
based on edge function,” in Proceedings of

2011 Cross Strait Quad-Regional Radio
Science and Wireless Technology Conference,
CSQRWC 2011, 2011, vol. 2, pp. 1235–1238.

 التنفيذ المتوازي للتنقيط الثلاثي الابعاد باستخدام معمارية كودا

 فخرالدين حامد علي سرى نوفل عبد الرزاق
 fhali_a@yahoo.com sura.nawfal@uomosul.edu.iq

الحاسوبهندسة قسم - كلية الهندسة -جامعة الموصل

 الملخص
النقل الخاص في خط الاشكالعرض مهمة في خط نقل الرسومات الثلاثية الابعاد,تنُفذ هذه المرحلة قبلتعتبر عملية تجسيم الاشكال من المراحل ال

م استخدتم ا .العمللتسريع الخاصة بتوليد النقاط وذلك بأستخدام التنفيذ المتوازي خوارزمياتصميم ال، تم ت بحثال افي هذ(.GPU) وحدة المعالجة الرسوميةبـ
الذي يعتبر العنصر الاساسي للعمل في الانظمة هذه الخوارزمية في ملء المثلثواُستغلت (.DDAفاضلي الرقمي ثلاثي الأبعاد)خوارزمية المحلل الت

تم تصميم الطريقة الاولى بحيث يتم توليد خطوط المسح بصورة متوازية. اما في الحافة. دالة خط المسح وطريقتين اساسيتين: باستخدام الصورية, وذلك
 CUDAصُممت ونُفذت بنااءاًعلى معماريةجميع هذه الخوارزميات يقة الثانية فتم توزيع العمل بحيث ان كل خيط يولد نقطة صورية واحدة.الطر

، OpenGLبتنفيذ الـكحد أقصى مقارنةً 2534xكان حوالي 3D DDAخوارزمية هرت النتائج التجريبية أن مقدار التسارع لاظ .GPUمعالج بأستخدامالو
 مليار نقطة في الثانية الواحدة. 2.3وذلك بسرعة توليد من خط المسح فكانت افضلة الحافة اما خوارزمية دال

 الكلمات الداله :

 .تجسيم الاشكال،التنفيذ المتوازي ،دالة الحافة ،معمارية كودا وحدة المعالجة الرسومية ،

mailto:fhali_a@yahoo.com
mailto:sura.nawfal@uomosul.edu.iq

