

Al-Rafidain Engineering Journal (AREJ)

Vol. 25, No.1, June 2020, pp. 70-77

Al-Rafidain Engineering Journal (AREJ) Vol. 25, No.1, June 2020, pp. 70-77

Design Analysis of Turbo Decoder Based on One MAP Decoder

Using High Level Synthesis Tool

Amer T. Ali Dhafir A. Alneema
 aamertali@yahoo.com dhafir.abdulfattah@uomosul.edu.iq

Computer Engineering Department, Collage of Engineering, University of Mosul

 Received: 14/3/2020 Accepted: 6/6/2020

ABSTRACT

High Level Synthesis (HLS) tool does not only simplify the designing operation and rapid

prototyping but also allows the designers to explore large number of design’s techniques such as parallelism,

pipeline, memory partitioning and many other techniques. Turbo decoder based on Maximum APosterior

Probability (MAP) algorithm is designed in this work using Vivado HLS. The normal turbo decoder with two

MAP decoders were implemented with and without parallelism and proposed a new design of turbo decoder

with one MAP decoder and it was designed with and without parallelism using different window technique in

HLS tool which it is not explored previously. These designs were implemented for different frame size in this

work. A comp-arison in latency and resource utilization where done and how a tradeoff done between these

two parameters to reach the specific design that we need. The new design produces better results.

Keywords:

HLS tool; Turbo decoder; Latency; Resource utilization.

1. INTRODUCTION
Communication systems are one of the most

important elements of the requirements of modern

times. The increasing demand for information and

exchange of information among users of networks

has become the most important necessities in

contemporary daily life, therefore, attention has
been given to this field and many work and

research has been done to make the comm-

unication systems highly capable to meet these

requests. With the emergence and spread of

wireless devices as well as the use of wireless

networks, communication systems must do the

best performance and increase the work in order

to keep pace with this tremendous development in

the field of information transmission [5].

One of the things that has been achieved in

communication systems is to increase reliability
specially in wireless communications because it

transfers on noisy channel. Forward Error

Correction (FEC), have been put in place to get

the correct information for the recipient to

increase reliability [7].

Forward Error Correction (FEC), is amath-

ematical method that adds some known values to

the message sent by the sender and the receiver of

this message can received it correctly even in case
of errors in the message during the transfer. In

modern digital communication systems repre-

sented in Fig. 1, the channel encoder and channel

decoder are considered an important part of this

system as a FEC [5].

Fig. 1 General block diagram of digital
communication systems

https://rengj.mosuljournals.com
Email: alrafidain_engjournal@umosul.edu.iq
===

ISSN (Print) 1813-0526;

ISSN (Online) 2220-1270

mailto:aamertali@yahoo.com
mailto:dhafir.abdulfattah@uomosul.edu.iq

 71 Amer T. Ali: Design Analysis of Turbo Decoder Based …...

Al-Rafidain Engineering Journal (AREJ) Vol. 25, No.1, June 2020, pp. 70-77

FEC has been introduced in many areas of

wireless and space communications like

3
rd

Generation Partnership Project Long Term

Evolution (3GPP LTE), Global System for

Mobile communications (GSM), IEEE Standard

P802.16 also known as (WiMAX) Worldwide

inter-operability for Microwave Access, Digital

Video Broadcasting Satellite Services to

Handheld (DVB-SH), Universal Mobile

Telecommunication System (UMTS) and other

applications [3].
Forward error correction has a long history so it

has many types of coding. Each type has many

different characteristics in possibilities, purposes

and mathematical calculations like: The

Repetition Code, The Parity Bit, The Hamming

Code, Hadamard Codes, Golay Codes, Reed-

Solomon Codes, Convolution Codes, low-density

parity-check (LDPC), Turbo codes and many of

them [15].

One of FEC types is the turbo code. The

development and improvement of turbo encoder

and turbo decoder is a wide area of research so
there are many attempts to implement the turbo

code. Many researches using Very high-speed

integrated circuit Hardware Description Language

(VHDL). Whereas Recently, the trend has turned

to made implementations using High Level

Synthesis (HLS) tools. Which is a tool for rapid

prototyping and production of hardware designs

with short developmental cycles in Register

Transfer Level (RTL). It is based on widespread

high-level language (HLL)C/C++. This will

enable the user to design complex hardware
designs [10].

The researchers in [1] using parallelism level 64

for frame size 2048-6144 and parallelism level 8

for frame size 256-2048 and using an interleaver

proposed by them, and they conclude that the

result of performance and latency that could use

turbo code in future terrestrial broadcasting (TB)

systems.

And in research [2] a comparison between turbo

code, LDPC, polar code was done the result

showed that the turbo code made the best

performance than the others in error correction
and

flexibility in using different block sizes and

different code rates.

In paper [3] BER (Bit Error Rate) per-formance

was investigated with multilevel of parallelism

and for small frame size and concluded that self-

concatenated convolutional code is better than the

normal turbo code performance in BER.

Research in which HLS tools were verified as a

means of producing prototypes and shortened

development cycles needed to produce device

designs at the RTL was done in [4]. A LDPC was

used and their results showed that codecs that the

using HLS tools, either as pipeline or as data flow

designs, is able to reach the productivity of

existing designs at the RTL.

While a master’s thesis in [5] proposed by Conn,

three types of turbo decoders were designed.

These designs were implemented with different

architecture using high level synthesis (HLS) tool

that used in software defined radios (SDR).
46 articles were studied on the quality of the

results and design efforts. The implemented

designs were compared using HLS tools and RTL

designs in [6] and they found that 40% of the

cases studied proved that HLS tools equaled or

outperformed RTL designs from In terms of

performance and better use of resources, they also

studied whether the size of the design affects

performance quality, and they concluded that

HLS tools are suitable for both large and small

designs.
In paper [7] high level synthesis tool was used for

implementing turbo decoder algorithms with

exploration of HLS optimization using different

directives for designing several archi-tecture

designs of turbo decoders.

This work designs a normal turbo decoder with

two decoders in iterative fashion in C++ language

and make it fully parallel by unroll directive using

Vivado HLS tool and make

a comparative with a proposed turbo decoder with

one decoder in iterative fashion and again made

it fully parallels by same directive. These two
decoders are decoding three different frame size

of 108, 216 and 432 received bits, with two

different windows, 9 decoded bits of 27 received

bits and 36 decoded bits of 108 received bits and

compare these designs in latency and resources

utilization.

2. THE THEORETICAL BASES

This section talks about turbo code as one of

forward error correction and formed by two
stages: turbo encoder and turbo decoder. The next

part is about HLS tools.

2.1. Turbo encoder

It is formed by two recursive systematic

convolutional (RSC) encoder in parallel conca-

tenation and the two encoders separated by an

interleaver.

There are many researches on the (RSC) and how

to design it but in this paper two memory

 Amer T. Ali: Design Analysis of Turbo Decoder Based …... 72

Al-Rafidain Engineering Journal (AREJ) Vol. 25, No.1, June 2020, pp. 70-77

elements were used with recursive feedback and

the generator polynomial is [16]:

 (p1)

The main purpose of interleaver is to reduce the
burst error to help for error correction. This paper

uses a block interleaver. Block interleaver is look

like two-dimensional array and inter the value of

the input bits, bit by bit in rows way into this

array and read these bits again, bit by bit in

columns way. In the end of encoding each input

bit well be decoded in three bits one is the

systematic input and two parity bits. Fig. 2

explains the components of the turbo encoder.

Fig. 2 Block diagram of turbo encoder.

2.2. Turbo decoder

All equations were mentioned in this section were

taken from [5]. The second stage of turbo code is

the turbo decoder, it is more complex than turbo

encoder. The decoding technique based on trellis

method for sot input soft output (SISO)

algorithms in Fig. 3 turbo decoder is shown.

Fig. 3 Block diagram of turbo decoder.

Where SISO 1 and SISO 2 are the soft input soft

output decoding algorithms. Hard decision maker

is deciding whether the bit is zero or one

depending on the value of decoder output, if the

value is positive the bit will be one and if the
value is negative the bit will be zero, this decision

is taken after decoding the message.

The work of turbo decoder simply begins when

SISO 1 decoder decode the massage and pass his

opinion depending on the algorithms decode, to

the SISO 2 decoder helping this decoder to make

his decode and pass his opinion to the SISO 1

again in iterative fashion for suitable number of

itera-tions. This opinion is named extrinsic

information.

One of the (SISO) decoding algorithms is
maximum a Posterior (MAP) or called

(BCJR) algorithm [2]. MAP algorithm calcu-

lates the logarithm ratio of the probability of

bit that will be one over probability of bit that
will be zero this ratio is named log likelihood

ratio (LLR). The LLR is computed by the

equation bellow:

LLR (uk|y) = log

 (1)

Where P is the probability, uk is the bit will be

decoded and y is the bit was received from the

channel.

After several mathematical analyzing and

simplification, the equation will be like bellow:

LLR(uk|y) = ln
∑ (

) ()

∑

The numerator represents the multiplication of the

values of alpha, gamma and beta for the bit equal

one in transmits from one state to another in

trellis. The denominator value is the same thing

but for bit equal to zero, is called the
forward recursion and it is computed by the next

equation:

 (3)

 is represented the alpha value for the next

state,
 is the value of alpha for the

current state and is the value of branch
metric for branching from current state to next

state. The value of alpha is calculated from the

beginning to the end of trellis. The initial value of

first alpha value is one for state zero and zero for

the other states.

And βk is called backward recursion and it is

computed by the equation bellow:

 (4)

Where is the value of beta for the next

state,
 is the value of beta for current state

and is the value of branch metric for

branching from current state to next state. The

value of beta is calculated from the end to the

beginning of the trellis. The initial value of the

 73 Amer T. Ali: Design Analysis of Turbo Decoder Based …...

Al-Rafidain Engineering Journal (AREJ) Vol. 25, No.1, June 2020, pp. 70-77

last beta value is one for state zero and zero for

the others.

Finally, is the branch metric for

branching from state to another state and it is

computed by the following equation:

(

 ∑

) (5)

 Where Ck is a constant ignored because of

the division, Lc is the channel reliability, yk the

bit received from the channel, uk represent the

trellis input, Luk represent the extrinsic
information that came from the previous decoder,

n equal two bits the systematic bit and the parity

bit. Where yk is the received bit for systematic and

parity bits.

At the end, we calculate the extrinsic information

by subtracting the decoded value from the

extrinsic information from previous decoder and

from the received value of the bits.

2.3. Vivado HLS

When using HLS for designing we can convert an

algorithm written in HLL such as C/C++ to RTL

automatically. But there are many points must

deal with. First of all, the tool has limitation for

example the all memories must be static and the

compiler must know the memory size before the

compilation. For that there is neither heap nor

stack memory were used in the program [8].

Another point is how to write a program and how

the tool translate the program as a hardware. For

example, when we write these programming

sentences in C language:
if (X==Val1) X=Function(A);

if (Y==Val2) Y=Function(B);

this well make the hardware of the (Function)

duplicated. But if we write them like:

if (X==Val1) X=Function(A);

else if (Y==Val2) Y=Function(B);

the hardware well not duplicated and this well be

effort on the resource utilization.

Directives or known as pragmas are another point

must focus in. The hardware design can’t be

optimized by using HLL only. The HLS tool offer
another feature for how the hardware implement-

ed. There are many directives for different

design’s

techniques such as parallelism, pipeline, memory

partitioning and many other techniques [8]. Only

the directives that used in this paper well be men-

tioned:

 Loop Unrolling: when this directive was used

the hardware well replicated. And this well

allows parallelism and effective to reduce

latency but the cost is more resources well

be used [8].
 Array partitioning: this directive was used to

reduce the data access dispute and this done

by splitting the array into small block RAM

Vivado HLS provided three types of
partitioning block, cyclic and complete. By

using complete type, the array well split into

individual elements (registers) and the fully

parallel access can be done but the cost is in

the resource utilization [8].

3. THE PROPOSED METHODOLOGY

The Scenario of how the MAP decoding
algorithm working is presented by the following

steps:

● Calculating the gamma’s values and in the

same time calculate alpha’s values from the

beginning of the trellis to the end of it.

● Calculating beta’s values, decoder’s output
and the extrinsic information in the same

time from the end of trellis to the beginning.

● Repeat the first two steps for 8 iterations.

The algorithm is implemented in C++ language

using Vivado HLS tool. Vivado HLS tool

supporting C, C++and System C language for

designing. Also, supporting many processing

tech-niques like pipeline, parallelism, memory

par-titioning and many others by using directives.
In this paper unrolling directive will be used for

parallelism the all for loops (the inner for loops

for calculating alpha, gamma, beta and the

extrinsic information. And the outer for loops for

the iterations) in turbo decoder to design full

parallel turbo decoder. Two designs were com-

pered in this work one is the normal turbo

decoder with two MAP decoders and the other is

turbo decoder with one MAP decoder. Fig. 4

show how the algorithm work with one MAP

decoder.
In this research, not the whole message was

decoding, a smaller window size was taken. A

window of 27 bits from the message to decode 9

bits and window of 108 bits to decode 36 bits.

These two windows were implemented for frame

size of 108, 216 and 432 to decode 36, 73 and 144

bits these numbers of frame size were chosen to

fit in the two chosen windows. The window size

represents the parallelism level when the Vivado

HLS unrolling directive was involved in the prog-

ram loops for making them working in parallel.
Block interleaver was used for the all designs.

The results were calculated and comparison in

latency and resource utilization were made.

 Amer T. Ali: Design Analysis of Turbo Decoder Based …... 74

Al-Rafidain Engineering Journal (AREJ) Vol. 25, No.1, June 2020, pp. 70-77

Fig. 4. Block diagram of turbo decoder with one

MAP decoder.

4. RESULTS AND DISCUSSIONS

The whole programs were written in C++

language using Vivado HLS. The data type where

used was double. The directives were used are

dependencies and unroll for parallelism. The
device where used to implement all designs was

Virtex Ultra Scale+FPGA (xcvu13p-fsga2577-2-

I)

 where it has 216000 SLICE, 1728000 LUT,

3456000 FF, 12288 DSP and 5476 BRAM.

The targeted clock set to 10 ns.

Table 1: Results of minimum and maximum

latency for turbo decoder with one MAP decoder

for different designs.

Design type
Latency

(clock cycles)

min

Latency
(clock cycles)

max

Turbo decoder without parallel window
9 for 108 bits

47361 81025

Turbo decoder with parallel window 9

for 108 bits
9933 18285

Turbo decoder without parallel window

36 for 108 bits
40270 68798

Turbo decoder with parallel window 36

for 108 bits
21078 39510

Turbo decoder without parallel window

9 for 216 bits
94721 162049

Turbo decoder with parallel window 9

for 216 bits
18501 34053

Turbo decoder without parallel window

36 for 216 bits
80543 137599

Turbo decoder with parallel window 36

for 216 bits
42124 78988

Turbo decoder without parallel window

9 for 432 bits
189441 324097

Turbo decoder with parallel window 9

for 432 bits
30849 56769

Turbo decoder without parallel window
36 for 432 bits

161085 275197

The result listed in Table 1 for turbo decoder with

one MAP decoder resulting the mini-mum and

maximum latency with different frame size and
different windows.

Table 2: Results of minimum and maximum

latency for turbo decoder with two MAP decoders

for different designs.

Design type

Latency

(clock cycles)

min

Latency

(clock cycles)

max

Turbo decoder without parallel window 9

for 108 bits
47841 79265

Turbo decoder with parallel window 9 for

108 bits
10534 19718

Turbo decoder without parallel window

36 for 108 bits
40486 67590

Turbo decoder with parallel window 36

for 108 bits
21558 40502

Turbo decoder without parallel window 9

for 216 bits
95681 158529

Turbo decoder with parallel window 9 for
216 bits

11614 21662

Turbo decoder without parallel window
36 for 216 bits

80975 135183

Turbo decoder with parallel window 36
for 216 bits

41784 78520

Turbo decoder without parallel window 9

for 432 bits
191361 317057

Turbo decoder with parallel window 9 for

432 bits
17953 33345

Turbo decoder without parallel window

36 for 432 bits
161949 270365

Turbo decoder with parallel window 36

for 432 bits
82114 154306

Table 3: Results of resource utilization for turbo

decoder with one MAP decoder for different

designs.

Design type
BRAM_

18K
DSP48E FF LUT

Turbo decoder without parallel
window 9 for 108 bits

24 449 29592 42238

Turbo decoder with parallel
window 9 for 108 bits

0 1468 115594 142821

Turbo decoder without parallel
window 36 for 108 bits

48 449 27717 42018

Turbo decoder with parallel

window 36 for 108 bits
0 411 70763 53567

Turbo decoder without parallel

window 9 for 216 bits
24 499 29595 42241

Turbo decoder with parallel

window 9 for 216 bits
0 1468 124686 145321

Turbo decoder without parallel

window 36 for 216 bits
48 499 27734 42118

Turbo decoder with parallel

window 36 for 216 bits
0 411 76833 55738

Turbo decoder without parallel

window 9 for 432 bits
24 499 29601 42249

Turbo decoder with parallel

window 9 for 432 bits
0 1468 140090 153601

Turbo decoder without parallel

window 36 for 432 bits
48 499 27741 42122

Turbo decoder with parallel

window 36 for 432 bits
0 411 86157 58748

 The result listed in Table 2 for turbo

decod-er with two MAP decoders resulting the

min and max latency for different frame size and

different windows.

Where the result listed in Table 3 for turbo
decoder with one MAP decoders resulting the

resource utilization for different frame size and

 75 Amer T. Ali: Design Analysis of Turbo Decoder Based …...

Al-Rafidain Engineering Journal (AREJ) Vol. 25, No.1, June 2020, pp. 70-77

different windows and Table 4 resulting the

resource utilization for different frame size and

different windows for the turbo decoder with two

MAP decoders.

Table 4: Results of resource utilization for turbo

decoder with two MAP decoders for different

designs.

Design type
BRAM

_18K
DSP48E FF LUT

Turbo decoder without parallel

window 9 for 108 bits
24 998 57991 81599

Turbo decoder with parallel

window 9 for 108 bits
0 2358 180550 226644

Turbo decoder without parallel

window 36 for 108 bits
72 998 54592 81256

Turbo decoder with parallel

window 36 for 108 bits
0 874 109946 107473

Turbo decoder without parallel

window 9 for 216 bits
24 998 57994 81602

Turbo decoder with parallel

window 9 for 216 bits
0 5502 392777 529506

Turbo decoder without parallel

window 36 for 216 bits
72 998 54609 81356

Turbo decoder with parallel
window 36 for 216 bits

0 874 125488 110954

Turbo decoder without parallel
window 9 for 432 bits

24 998 58000 81610

Turbo decoder with parallel
window 9 for 432 bits

0 8857 659167 864470

Turbo decoder without parallel

window 36 for 432 bits
72 998 54616 81360

Turbo decoder with parallel

window 36 for 432 bits
0 1696 244154 213636

The drawing in Fig. 6 and Fig. 7 for
Table 1 and Table 2. The plotted symbols

meaning listed by Table 5.

From these results we can see that when the turbo

decoder with one MAP decoder was used with

large window size and without using paralle-lism

in the design, the latency is better from small

window size and has less resource utilization only

in memory utilization is higher because of the

larg-er window size. And the same explanations

for the turbo decoder with two MAP decoders and

for maximum and minimum latency.
When we use parallelism for both turbo decoder

designs with one or two MAP decoders, the

minimum and maximum latency of the small

window was better than the larger window size,

but the resource utilization was larger than the

large window size. In other hand, the larger

window size takes less resources than the small

window size but in latency it was not the better

choice.

If we make a comparison between the turbo

decoder with one MAP decoder and the turbo

decoder with two MAP decoders without using
parallelism the design with two MAP decoders

was better in maximum latency than the design

with

one MAP decoder. And if we use parallelism the

turbo decoder with one MAP decoder was the

best for the two designs in maximum latency.

And it was utilized less resources than the turbo

decoder with two MAP decoders and for the two

designs with or without using parallelism.

Table 5: Fig. 6 and Fig. 7 Chart's symbols

meaning.

W9 for min Turbo decoder without parallel window 9 for min latency

W9P for min Turbo decoder with parallel window 9 for min latency

W36 for min Turbo decoder without parallel window 36 for min latency

W36P for min Turbo decoder with parallel window 36 for min latency

W9 for max Turbo decoder without parallel window 9 for max latency

W9P for max Turbo decoder with parallel window 9 for max latency

W36 for max Turbo decoder without parallel window 36 for max latency

W36P for max Turbo decoder with parallel window 36 for max latency

Fig. 6 Latency plot for turbo decoder with one

decoder.

Fig. 7 Latency plot for turbo decoder with two

decoders.

5. CONCLUSION

In this paper we explained that we can use HLS to
make an architecture design by C++ language and

make the (RTL) automatically using Vivado HLS

and make several designs with many processes

like parallelism, and we conclude that the design

of turbo decoder with one MAP decoder is better

than the turbo decoder with two decoders

spatially when we went to make the area of the

 Amer T. Ali: Design Analysis of Turbo Decoder Based …... 76

Al-Rafidain Engineering Journal (AREJ) Vol. 25, No.1, June 2020, pp. 70-77

designs smaller by utilize less resources. And

when we went to design low maximum latency

turbo

decoder in fully parallel design, the turbo decoder

with one MAP decoder produce better results.

REFERENCES

[1] H. Luo et al, "Low Latency Parallel

Turbo Decoding Implementation for

Future Terrestrial Broadcasting Systems,"
in IEEE Transactions on Broadcasting,

vol. 64, no. 1, pp. 96-104, 2018.

[2] S. Shao et al., "Survey of Turbo, LDPC,

and Polar Decoder ASIC Implemen-

tations," in IEEE Communications

Surveys & Tutorials, vol. 21, no. 3, pp.

2309-2333, 2019.

[3] F. Shaheen, M. F. U. Butt, S. Agha, S. X.

Ng and R. G. Maunder, "Performance

Analysis of High Throughput MAP

Decoder for Turbo Codes and Self
Concatenated Convolutional Codes,"

in IEEE Access, vol. 7,

pp. 138079-138093, 2019.

[4] J. Andrade et al., "Design Space

Exploration of LDPC Decoders Using

High-Level Synthesis," in IEEE Access,

vol. 5, pp. 14600-14615, 2017.

[5] B. E. Conn, “Exploring High Level

Synthesis to Improve the Design of Turbo

Code Error Correction in a Software

Defined Radio Context,” Master’s thesis,

pp. 109, 2018.
[6] S. Lahti, P. Sjövall, J. Vanne and T. D.

Hämäläinen, "Are We There Yet? A

Study on the State of High-Level

Synthesis," in IEEE Transactions on

Computer-Aided Design of Integrated

Circuits and Systems, vol. 38, no. 5, pp.

898-911, 2019.

[7] W. Stirk and J. Goeders, "Implementation

and Design Space Exploration of a Turbo

Decoder in High-Level Synthesis,

"2019 International Conferenceon
ReConFigurable Computing and FPGAs

(ReConFig), Cancun, Mexico, pp. 1-5,

2019.

[8] Xilinx, “Vivado HLS References,”

vol. 901. pp. 1–120, 2018.

[9] M. F. Brejza, R. G. Maunder,B. M.

Al-Hashimi and L. Hanzo,"A High-

Throughput FPGA Architecture for Joint

Source and Channel Decoding," in IEEE

Access, vol. 5, pp. 2921-2944, 2017.

[10] J. Andrade et al., "Design Space

Exploration of LDPC Decoders Using

High-Level Synthesis," in IEEE Access,

vol. 5, pp. 14600-14615, 2017.

[11] A. Badr, A. Khisti, W. Tan and

J. Apostolopoulos, "Perfecting Protection

for Interactive Multimedia: A survey

of forward error correction for low-delay

interactive applications," in IEEE Signal

Processing Magazine, vol. 34, no. 2,
pp. 95-113, March 2017.

[12] G. Tzimpragos, C. Kachris,

I. B. Djordjevic, M. Cvijetic, D. Soudris

and I. Tomkos, "A Survey on FEC Codes

for 100 G and Beyond Optical Networks,"

in IEEE Communications Surveys &

Tutorials, vol. 18, no. 1, pp. 209-221,

Firstquarter 2016.

[13] M. D. S. P. Design, “Vivado HLS Lab

Tutorial,” Fpga, vol. 986. pp. 1–100,

2014.
[14] M. F. U. Butt, S. X. Ng and L. Hanzo,

"Self-Concatenated Code Design and

its Application in Power-Efficient

Cooperative Communications," in IEEE

Communications Surveys & Tutorials,

vol. 14, no. 3, pp. 858-883, Third Quarter

2012.

[15] Chiueh, Tzi-Dar, et al. Baseband receiver

design for wireless MIMO-OFDM

communications. Singapore: Wiley, 2012.

[16] Yahya T. Qassim, Dhafir A. Alneema,

"FPGA Based Implementation of
Convolutional Encoder- Viterbi Decoder

Using Multiple Booting Technique".

AL-Rafdain Engineering Journal (AREJ),

Vol.18, No.6, pp. 70-80, 2010.

 77 Amer T. Ali: Design Analysis of Turbo Decoder Based …...

Al-Rafidain Engineering Journal (AREJ) Vol. 25, No.1, June 2020, pp. 70-77

 احتمال تكبير الترميز فك المرتكزعلى توربو الترميز فك تصميم تحليل

 (HLS) المستوى عالية تركيب أداة باستخدام وحيد (MAP) خلفي

ظافر عبد الفتاح عبد القادر عامر طلال علي

 dhafir.abdulfattah@uomosul.edu.iq aamertali@yahoo.com

 قسم هندسة الحاسوب - كلية الهندسة -جامعة الموصل

 الملخص

لا تسهل عملية التصميم وتسريع النماذج فقط وانما تسمح للمصممين استكشاف عدد كبير من تقنيات HLS)إن أداة التركيب عالية المستوى)
فكالترميزتوربو المرتكز على خوارزمية تكبير الاحتمال الخلفي ․التصميم مثل الموازاة، خطوط الانابيب، تقسيم الذاكرة والكثير من التقنيات الأخرى

(MAP) ستخدام برنامج قد صممت في هذا العمل بإVivado HLS. تم في هذا البحث تنفيذ فك الترميز توربو الاعتيادي المكون من اثنين من فك ترميز
واحد وقد تم تنفيذ (MAP)واقتراح تصميم لفك الترميز توربو جديد يتمثل باستخدام فك ترميز تكبير الاحتمال الخلفي (MAP)تكبير الاحتمال الخلفي

هذه . وان هذا العمل لم يتم تنفيذه سابقا Vivado HLSالموازاة وبدونها في كلا التصميمين وبإستخدام تقنية النافذة وباستخدام برنامج التصميمين باستخدام
ذين العاملين تم عمل مقارنة في زمن الاستجابة واستغلال المصادر وكيفية عمل مقايضة بين ها . التصاميم نفذت في هذا العمل على نماذج ذات احجام مختلفة

 .وذلك للوصول الى التصميم المناسب الذي نحتاجه

 :الدالةالكلمات

 أداة تركيب عالية المستوى، فك الترميز توربو، زمن الاستجابة، استغلال المصادر.

mailto:dhafir.abdulfattah@uomosul.edu.iq
mailto:dhafir.abdulfattah@uomosul.edu.iq
mailto:aamertali@yahoo.com
mailto:aamertali@yahoo.com

