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ABSTRACT  
 The precise position control of a DC servo motor is a major concern in today's control theory. This 

work presents position following and forecast of DC servo engine utilizing an alternate control technique. 

Control technique is required to limit and diminish the consistent state error. A model predictive controller 

MPC is utilized to plan and actualize these prerequisites. Two sorts of controlling techniques are presented 

in this task. The Active Set Method (ASM), the inside point technique (IIP), and have been utilized as 

controlling strategies. This work distinguishes and depicts the plan decisions identified with a two sorts of 

controllers and judicious regulator for a DC servo motor. Execution of these regulators has been confirmed 

through reproduction utilizing MATLAB/SIMULINK programming. As indicated by the recreation results the 

Comparisons among ASM, IIP. The tuning strategy was increasingly proficient in improving the progression 

reaction attributes, for example, decreasing the rise time, settling time and most prominent overshoot in 

Position control of DC servo motor.  
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1. INTRODUCTION  

It is very basic to design a control system that 

would deal with the problem of nonlinear effects 

that excessively influence the steady operation of  

our electric engines.DCSM(D.C  

ServoMotor)straightforward engine which is 

generally controlled for explicit precise revolution 

with the guide of an uncommon course of action 

ordinarily a shut circle input control framework 

called SERVOMECHANISM. The DCSM has 

such a significant number of utilizations. A 

portion of the applications are found in far off 

controlled toy vehicles for controlling course of 

movement and it is likewise utilized as the engine 

which moves the plate of a CD or DVD player. 

The principle purpose for utilizing a servo is that 

it gives high accuracy, for example it will just 

turn as much we need and afterward stop and 

hang tight for next sign to make further move. 

This is not normal for a typical electrical engine 

which turns over pivoting as and when force is 

applied to it and the revolution proceeds until we 

switch off the power, MPC and furthermore 

called control horizon, retreating horizon or 

quadric programming control. MPC is an input 

calculation that utilizes a model to anticipate the 

future yield of the procedure by taking care of an 

advancement issue at each time venture to locate 

the ideal activity of the control by which the 

anticipated yield of the procedure become close 

as conceivable to the ideal reference or the 

objective by limiting the blunder between the 

reference and the anticipated yield ,MPC is a 

control innovation which can be set up with the 

capacity to deal with the issue of streamlining 

with imperatives, it is utilized in numerous 

applications, for example, physical procedures 

automated control framework, petrochemical 

industry. The center of the MPC controller is to 

take care of a limited advancement issue on the 

web so that in the greater part of MPC 

frameworks the online computational 

multifaceted nature results executed by a PCs of a 

superior  [1]. 
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 In 1960, Kalman are right off the bat chipped 

away at straight MPC. Kalman said that the plant 

which can be constrained by a direct control can 

be improved. After that LQR(Linear-Quadratic 

Regulator) was driven and intended to make a 

minimization of unconstraint quadratic capacity 

of information and states. Due to the non-linearity 

of the most plants that utilized in industry and 

there is no imperative of it LRQ isn't generally 

utilized in the business. Then Dynamic Matrix 

Control (DMC), contrived by Shell Oil , and a 

related methodology created by ADERSA have 

very comparative capacities [2].  

A versatile MPC procedure Generalized 

Predictive Control (GPC) has additionally gotten 

significant consideration [3]. In 2003, Both Ruth 

Millman and Joseph Davison maintained the 

algorithm New programming solution (QP) 

squared control Updated time bellow of the 

effective group algorithm (active group) based 

directly on multiplication methods Lacran 

multiplier And equations of determinants, and 

various of this method The primary-secondary of 

the middle point (inner double inner point) [4]. 

 In 2009, was carried out by researchers 

P.D.Dimitrion, et al. ,  represent real-time 

predictive control based on the MPC An 

embedded microcontroller using SoC technology 

within a chip ,the chip as an assistant processor 

performs calculations to calculate the optimal 

point in the programming solution Using the 

logarithmic numbering system (LNS) to represent 

the numbers [5]. In 2010, D. Wilson et al., 

represented constructive predictive control On the 

model with simple requirements using both 

matrix field programmable gates Spartan 3, 

Digital Signal Processing Chips (DSP chips), 

Microcontroller Microcontroller (PC) for 

designing embedded applications [6]. In 2011, 

J.L.Jenez, E.C.Kerrigan represents quadratic 

programming in a matrix of programmable field 

gates for linear control For linear operations, the 

specifiers within the model-based predictive 

control have been used Parallel Tubing 

Technology to Reduce Quadratic Programming 

Time  [7]. 

 In 2013,  Vihangkumar V. Naik, et al. design 

Model Predictive Control of DC Servomotor 

using Active Set Method[8]. In 2013 ,J.L.Jerez, 

P.J.Goulart, represent the model-based predictive 

control on the gates matrix Virtex 6 

programmable, using fast gradient method to 

solve quadratic programming (QP) with the use of 

a decimal point(fixed point numbers ) [9]. In 

2016, Zidong Wang  et al.,design Robust model 

predictive control under redundant channel 

transmission with applications in networked DC 

motor systems[10]. In any case, writing study 

shows that few control procedures were proposed 

for the DCSM. In 2016 researchers et al.,design  

Model Predictive Climate Control of a Swiss 

Office Building  [15]. 

  

3. D.C. Servo Motor Analysis 

 In this research, the dc servo motor has been 

consider as a linear SISO (Single Input Single 

Output) system having third order  transfer 

function. The speed and position of a DC servo 

engine can be fluctuated by controlling the field 

transition, the armature opposition or the terminal 

voltage applied to the armature circuit. The three 

most basic position control strategies are field 

obstruction control, armature voltage control, and 

armature opposition control. Here the armature 

voltage control has been considered in light of the 

fact that servo engine is less delicate to change in 

field current. In force condition field motion is 

adequately huge. Consequently, every little 

change in armature current, Ia, turns out to be a 

lot of touchy to the servo engine, here consider 

the armature controlled DC servo engine 

framework.The structure of the Armature 

controlled DC servo motor is shown in Figure 1   

[16]. 

 
Fig. 1 Armature controlled DC servo motor[16]. 

 

Mathematical model for DC motor is[16]: 

 
⊖ (𝑠)

𝐸𝑎(𝑠)
=

𝐾𝑇𝑀
𝑆[(𝐿𝑎𝑆 + 𝑅𝑎)(𝐽𝑆 + 𝐵) + 𝐾𝑇𝑀𝐾𝑏]

 (1) 

 

 Where Ra, La, J, and B, are the servo motor 

armature resistance and inductance, torque 

friction constant, and flux motor density 

respectively. While, Ea, Ia, Eb, T, and θ, are the 

armature voltage and current, motor voltage, 

torque, and motor displacement respectively,in 

order to simplify the calculations, KTM, Kb (The 

motor torque and motor constants respectively), 

are considered having the same values and 

replaced by K.  

 

 4. MPC Problem Analysis 
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 Model predictive control is a model based 

optimal control method that solves the 

constrained finite-horizon optimization problem 

by predicting the future behavior of system 

variables using the current state of the system at 

each sampling time. The predictions along the 

prediction and control horizon are calculated in 

order to minimize a cost function that generally 

depends on error and control signal. Only the first 

element of the obtained optimal control sequence 

is applied to the real system and the whole 

algorithm is repeated by measuring or observing 

the system output at the next sampling time. In 

the method, the cost function to be optimized 

depends on error and control signals along 

prediction and control horizon, respectively .  

 The optimal control sequence that minimizes 

the cost function is obtained along the control 

horizon by using the prediction of system states. 

Only the first element of the sequence is applied 

to the real system and the whole algorithm is 

repeated by measuring or estimating the system 

output at the next sampling time. The receding 

horizon control strategy provides the system a 

feedback and in this way, it is possible to 

compensate the modeling errors and the 

disturbances that affect to the system  [17], [18]. 

Basically, a MPC loop consists of a system 

model, a cost function and a optimization tool. 

There are two essential parameters in the loop: 

Prediction horizon Np and control horizon Nc. 

Whereas the prediction horizon refers to the 

length of horizon to be predicted, the control 

horizon defines the number of elements in the 

candidate control sequence to be applied to the 

system during the prediction horizon. Therefore, 

the inequality Nc≤ Np must always be satisfied and 

the elements after the Nc
 th  of candidate control 

sequence must be equal to the Nc
 th    element of 

the sequence. is shown in Figure. 2 The basic 

structure of MPC  [19], [20]. 

 

 
Fig. 2 The basic structure of the model predictive 

control[21]. 

 

 

 

4.1. Discrete-time MPC State Space Analysis 

 In this section, fundamental thoughts and 

terms about the discrete model prescient control  

will be introduced. The reason for using the 

discrete state space analysis is that for the 

facilities and the wide range of computational 

flexibilities available in the discrete analysis. The 

same state space analysis discussed in the 

previous section will be repeated with discrete 

time domain and more details. For 

straightforwardness, we start our examination by 

accepting that the basic plant is a solitary 

information and single-yield framework, depicted 

by  [22]:  

xm(K + 1) = Amxm(K) + Bmu(K),              (2) 
y = Cmxm(K)                                                     (3)  

 where u is the controlled variable or info 

variable; y is the cycle yield; and xm(K) is the 

state variable vector with accepted measurement 

n1. Note that this plant model has u(k) as its info. 

Subsequently, we need to change the model to 

suit our plan reason in which an integrator is 

installed. Note that an overall plan of a state-

space model has an immediate term from the info 

signal u(k) to the yield y(k) as : 

         y(K) = Cmxm(K) + Dmu(K)                     (4) 
 In any case, because of the rule of subsiding 

skyline control, where a current data of the plant 

is needed for expectation and control, we have 

verifiably accepted that the info u(k) can't 

influence the yield y(k) simultaneously. In this 

way, Dm = 0 in the plant model. Taking a 

distinction procedure on the two sides of (4), we 

get that 

 xm(K + 1) − xm(K)

= Am(xm(K) − xm(K − 1))

+ Bm(u(K) − u(K − 1)        (5) 
Let us denote the difference of the state variable 

by 

Δ𝑥𝑚(𝐾 + 1) = 𝑋𝑚(𝐾 + 1) − 𝑥𝑚(𝐾),      
 Δ𝑥𝑚(𝐾) = 𝑥𝑚(𝐾) − 𝑥𝑚(𝐾 − 1)                       (6)  
And the difference of the control variable by:  

Δ𝑢(𝐾) = 𝑢(𝐾) − 𝑢(𝐾 − 1)                                 (7) 
 These are the additions of the factors x_m 

(K) and u(K). with this change, the distinction of 

the state-space condition is: 

Δ𝑥𝑚(𝐾 + 1) = 𝐴𝑚Δ𝑥𝑚(𝐾) + 𝐵𝑚Δ𝑢(𝐾).       (8) 
 Note that the contribution to the state model 

is Δu(K). The subsequent stage is ro interface 

Δx_m (K) to the yield y(K). To do as such, 

another state variable vector is picked to be 

𝑥(𝐾) =  [Δ𝑥𝑚(𝐾)
𝑇 𝑦(𝐾)]𝑇 ,                                 (9) 

𝑦(𝐾 + 1) − 𝑦(𝐾) = 𝐶𝑚(𝑥𝑚(𝐾 + 1) − 𝑥𝑚(𝐾) 
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= 𝐶𝑚𝐴𝑚Δ𝑥𝑚(𝐾)
+ 𝐶𝑚𝐵𝑚Δ𝑢(𝐾)                                                      (10)              
  

Putting together (9) with (10) leads to the 

following state-space model: 

[
Δ𝑥𝑚(𝐾 + 1)

𝑦(𝐾 + 1)
]

⏞        
𝑥(𝐾+1)

= [
𝐴𝑚 0𝑚

𝑇

𝐶𝑚𝐴𝑚 1
]

⏞        
𝐴

[
Δ𝑥𝑚(𝐾)

𝑦(𝐾)
]

⏞      
𝑥(𝐾)

+ [
𝐵𝑚
𝐶𝑚𝐵𝑚

]
⏞    

𝐵

 Δ𝑢(𝐾)              (11) 

 

𝑦(𝐾) = [0𝑚1]
⏞  
𝐶

[
Δ𝑥𝑚(𝐾)

𝑦(𝐾)
]                                (12)                                                                   

 Where 0𝑚 = [0 0 . . . 0]
⏞      

𝑛1

 the trio (A,B,C) is 

known as the model, which will be utilized in the 

plan of prescient control 

  

4.2. MPC of State and Output Variables inside 

One Optimization Window 
 Over the detailing of the numerical model, 

the subsequent stage in the plan of a prescient 

control framework is to figure the anticipated 

plant yield with the future control signal as the 

movable factors. This expectation is depicted 

inside an improvement window. This part will 

inspect in detail the enhancement inside this 

window. Here, we accept that the current time is 

ki and the length of the enhancement window is 

Np as the quantity of tests. For 

straightforwardness, the instance of single-

information and single-yield frameworks is 

viewed as first, at that point the outcomes are 

stretched out to multi-input and multi-yield 

frameworks.  

 Expecting that at the inspecting moment ki, 

ki > 0, the state variable vector x(ki) is accessible 

through estimation, the state x(ki) gives the 

current plant data. The more broad circumstance 

where the state isn't straightforwardly estimated 

will be talked about later. The future control 

direction is meant by 

Δu(ki), Δu(ki + 1), .. , Δu(ki + Nc − 1),      (13)   

                                       

 where Nc is known as the control skyline 

directing the quantity of boundaries used to catch 

the future control direction. With given data x(ki), 

the future state factors are anticipated for Np 

number of tests, where Np is known as the 

forecast skyline. Np is additionally the length of 

the streamlining window. We indicate the future 

state factors as 

  x(ki + 1 | ki), x(ki + 2 | ki), ..., x(ki + m | ki), ..., 

x(ki + Np | ki)                                          (14)                         

 where x(ki+m | ki) is the anticipated state 

variable at ki+m with given current plant data 

x(k¬i). The control skyline Nc is picked to be not 

exactly (or equivalent to) the forecast skyline 

N¬p. In light of the state-space model (A, B, C), 

the future state factors are determined 

successively utilizing the arrangement of future 

control parameters[31]:  

𝑥(𝐾𝑖 + 1| 𝐾𝑖) = 𝐴𝑥(𝐾𝑖) + 𝐵Δ𝑢(𝐾𝑖) 
𝑥(𝐾𝑖 + 2| 𝐾𝑖) = 𝐴𝑥(𝐾𝑖 + 1|𝐾𝑖)  + 𝐵Δ𝑢(𝐾𝑖 + 1) 
= 𝐴2𝑥(𝐾𝑖) + 𝐴𝐵Δ𝑢(𝐾𝑖) + 𝐵Δ𝑢(𝐾𝑖 + 1) 
   . 

𝑥(𝐾𝑖 + 𝑁𝑝|𝐾𝑖 = 𝐴
𝑁𝑝 𝑥(𝐾𝑖) + 𝐴

𝑁𝑝−1 𝐵Δ𝑢(𝐾𝑖)

+ 𝐴𝑁𝑝−2  𝐵Δ𝑢(𝐾𝑖 + 1) 
+⋯+ 𝐴𝑁𝑝−𝑁𝑐 𝐵Δ𝑢(𝐾𝑖 +𝑁𝑐 − 1).          (15)                                                    

From the predicted state variables, the predicted 

output variable are, by substitution 

𝑦(𝐾𝑖 + 1| 𝐾𝑖) = 𝐶𝐴𝑥(𝐾𝑖) + 𝐶𝐵Δ𝑢(𝐾𝑖) 
𝑦(𝐾𝑖 + 2| 𝐾𝑖) = 𝐶𝐴

2𝑥(𝐾𝑖) + 𝐶𝐴𝐵Δ𝑢(𝐾𝑖)
+ 𝐶𝐵Δ𝑢(𝐾𝑖 + 1) 

𝑦(𝐾𝑖 + 3| 𝐾𝑖) = 𝐶𝐴
3𝑥(𝐾𝑖) + 𝐶𝐴

2𝐵Δ𝑢(𝐾𝑖)
+ 𝐶𝐴𝐵Δ𝑢(𝐾𝑖 + 1)
+ 𝐶𝐵Δ𝑢(𝐾𝑖 + 2) 

. 

. 

. 

𝑦(𝐾𝑖 + 𝑁𝑝|𝐾𝑖) = 𝐶𝐴
𝑁𝑝𝑥(𝐾𝑖) + 𝐶𝐴

𝑁𝑝−1𝐵Δ𝑢(𝐾𝑖)

+ 𝐶𝐴𝑁𝑝−3𝐵Δ𝑢(𝐾𝑖 + 1) 
+⋯     
+ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵Δ𝑢(𝐾𝑖 + 𝑁𝑐           
− 1).                                                                     (16)                                                    
 

 Note that all anticipated factors are defined as 

far as present status variable data x(ki) and the 

future control movement Δu(ki+j), where j = 0, 

1,...Nc − 1. Define vectors:  

Y
= [𝑦(𝐾𝑖 + 1|𝐾𝑖)  𝑦(𝐾𝑖 + 2|𝐾𝑖)  𝑦(𝐾𝑖     

+ 3|𝐾𝑖)… . 𝑦(𝐾𝑖 + 𝑁𝑝|𝐾𝑖)]
𝑇                         (  17)     

Δ𝑈 = Δ𝑢(𝐾𝑖) Δ𝑢(𝐾𝑖 + 1) Δ𝑢(𝐾𝑖 + 2)… . Δ𝑢(𝐾𝑖
+ 𝑁𝑐 − 1)

𝑇                         (18)     
 where in the single-information and single-

yield case, the component of Y is Np and the 

element of ΔU is Nc. We gather (17) and (18) 

together in a minimized network structure as: 

𝑌 = 𝐹𝑥(𝐾𝑖) + Δ𝑈                                       (19) 

Where 
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𝐹 =

[
 
 
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

.

.

.
𝐶𝐴𝑁𝑝]

 
 
 
 
 
 

                                                                        Φ

=  

[
 
 
 
 
 
 

 
   𝐶𝐵              0                   0              …                  0      
𝐶𝐴𝐵                 𝐶𝐵               0            …                 0   
𝐶𝐴2𝐵          𝐶𝐴Φ𝐵           𝐶𝐵            …                 0     

.

.

.
𝐶𝐴𝑁𝑝−1𝐵 𝐶𝐴𝑁𝑝−2𝐵 𝐶𝐴𝑁𝑝−3  𝐵 …𝐶𝐴𝑁𝑝−𝑁𝑐𝐵 ]

 
 
 
 
 
 

  (20) 

  

For a given set-point signal r(ki) at test time ki, 

inside a forecast skyline the goal of the prescient 

control framework is to bring the anticipated yield 

as close as conceivable to the set-point signal, 

where we accept that the set point signal 

remaining parts consistent in the advancement 

window.  

This goal is then made an interpretation of into a 

plan to track down the 'best' control boundary 

vector ΔU with the end goal that a blunder work 

between the set-point and the anticipated yield is 

limited. Accepting that the information vector that 

contains the set-point data is:  

Es
T = [1  1 . . .  1]⏞      

Np

 r(Ki),                               (21) 
 

We characterize the expense work J that mirrors 

the control unbiased as 

J = (Rs − Y)
T(Rs − Y) + ΔU

TŔΔU          (22)  
The structure of MPC is shown in Figure 3. 

 
 

Fig. 3 Model  predictive controller design  

flowchart. 

 

4.3 Active Set Methods(ASM)  

 The idea of active set methods is to define at 

each step of an algorithm a set of constraints, 

termed the working set, that is to be treated as the 

active set, The working set is chosen to be a 

subset of the constraints that are actually active at 

the current point, and hence the current point is 

feasible for the working set then the algorithm 

proceeds to move on the surface defined  by the 

working set of constraints to an improved point at 

each step of the active set method, an equality 

constraint problem is solved , If all the Lagrange 

multipliers λi ≥ 0, then the point is a local 

solution to the original problem if, on the other 

hand, there exists a λi < 0, then the objective 

function value can be decreased by relaxing the 

constraint i (i.e., deleting it from the constant 

equation)  [18],[19] . 
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                Fig . 4 ASM flowchart. 

 

   4.4. Infeasible Interior Point (IIP) 

 Interior point methods are guaranteed to 

converge, within a given accuracy, much faster 

than QP algorithms. Inside point strategies tackle 

issues iteratively to such an extent that all repeats 

fulfill the imbalance limitations rigorously. They 

approach the arrangement from either the inside 

or outside of the doable district yet never lie on 

the limit of this region ,to set up the conditions 

empowering us to plan the inside point techniques 

by defining a Lagrangian capacity, the general 

theory on compelled enhancement has been used 

and setting up Karush-Kuhn-Tucker (KKT) 

conditions for the QP's we wish to settle 

[20],[21]. 

 
              

              Fig . 5 IIP flowchart. 

 

5. D.C servo motor simulation 

       The D.C. servo motor of the plant has been 

implemented   with  the parameters shown in the 

table 1  and simulated using MatLab19b m. files 

and Simulink tool box 

 

Table 1: D.C. servo motor parameters [22]      

Parameters Value 

J:Moment of inertia of the motor( Kgm2 

/rad ) 
0.016 

coefficientfrictionB:Viscous

(Nm/(rad/sec)) 

0.1 

 

L:Armature inductance (H) 0.01 

R:Armature resistance (Ω) 1 

KTM: Electromotive force constant 

(Vs/rad) 
0.04 

Kb: Back emf constant of motor ( 

volt/(rad/sec)) 

0.04 
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Fig. 6 Simulink schematic of DC motor control 

system. 

 

       The m. files codes utilized to present  the 

operation of the D.C servo motor plant, transfer 

function. The Simulink step response illustrated 

in Figure 7  and The step response characteristic 

of the position  of dc servo motor such as the peak 

overshoot, the settling time, and the rise time are 

illustrated table 2 

 

 
 

Fig .7 Step response of the position of D.C. servo 

motor using matlab m file. 

 

 

Table 2: Characteristics of the step response of 

D.C servo motor 

Characteristics Value 

Rise  time 5.2061 sec 

Settling time 9.4213 sec 

Overshoot 0 % 

 

 

   

 

 

6. MPC Design and Simulation 
The MPC design  has been designed in  both 

ASM and IIP  algorithms with the parameters 

shown in table 3 and  have been represented via 

two MatLab19b techniques, the m. files ,the 

Simulink tool box as well as LabVIEW 

simulation toolbox as illustrated in Figures  8,9,10  

 

Table 3:The parameters that used to design MPC 

controller in ASM and IIP 

Parameter Value 

Sampling time 0.01 sec 

Prediction horizon 20 

Control horizon 4 

Input weight 0.1 

Output weight 10 

Input constraint -10<u<10 

Output constraint 0<y<1 

 

 

 

 

Fig. 8 Simulink model of DC Servo Motor control 

system based on MPC controller 
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Fig.. 9 The step response of  both MPC controller 

algorithms using m.file. 

 

From table 4 the performance parameters of the 

MPC controller that designed in both ASM and 

IIP are in the same values expected the execution 

time of both algorithms that show that the 

designed MPC controller in the IIP algorithm has 

less execution time compared with the MPC 

controller that designed in ASM algorithms, this 

is because the Active  set algorithm will perform 

a calculation to find feasible starting point ,this 

requires more math operations and more time . As 

well as the step response of the designed MPC 

controller, shows the effect of the constrain in the 

output when (0<y<1).  

 

Table 4:The performance parameters by 

designing MPC controller 

 

Performance 

parameters 

algorithm IIP ASM algorithm 

Settling time (sec) 0.2387 0.2387 sec 

Rise time   (sec) 0.1489 sec 0.1489 sec 

Overshoot 0% 0% 

Execution 

time(period=1/fc) 

40.5469 26.8438 

 

Cost function value 2.1296e-09 2.1296e-09 

 

 

 

Comparing the performance of the D.C servo 

motor with MPC controller and the performance 

of the D.C servo motor without a controller there 

is an enhancement in the performance  of the D.C 

servo motor when the MPC controller has been 

used to control it as shown in table 5. 

 

Fig.. 10 Designing MPC controller by using 

simulation in LabVIEW program 

 

. 

Table 5:The performance enhancement by MPC 

controller 

 
Performance 
parameters 

 
algorithm IIP 

 
ASM 
algorithm 

 
servo 
motor 

 
Settling time 

 
0.2387 sec 

 
0.2387 sec 

 
9.4213 
sec 
 

 
Rise time 

 
0.1489 sec 

 
0.1489 sec 

 
5.2061 
sec 

 
Overshoot 

 
0% 

 
0% 

 
0% 

 

6.1.The effect of changing the sampling 

time(Ts) in the performance of MPC 

controller. 

 The sample time is a key concept in 

model predictive control. The effect of changing 

the sampling time in the performance of MPC 

controller when prediction horizon (Np=20), 

control horizon(Nc=4), output weight (yo=10) 

Input weight (yu =0.1) is shown in Figure 12 and 

Table 6. 
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    Fig . 11 Effect of changing sampling time value 

 

Table 6:  Effect of changing  Ts in MPC 

controller 

timeSampling
(sec ) 

timeRise
(sec) 

Settling  time 

(sec) 
Overshoot 

0.6 0.9001 1.1433 1.0331 

0.3 0.5525 1.2054 2.6474 

0.2 0.4875 1.0874 3.0444 

0.01 0.1718 0.4783 5.0361 

 

From the previous result that illustrated in Figure 

12 and the table 6 that shows when the value of 

sampling time become small the overshoot 

parameter will be increased  but the rise  time and 

settling decreased.  

     When Ts turns to low value, the evaluation 

attempt also implementation period increment 

effectually as the MPC maximization case is 

evaluated rather generally. Rapid Ts will need a 

more estimation horizon to maintain the 

estimation period steady.  

 Nevertheless, as discussed in the Prediction 

Horizon section, more prediction horizons direct 

to further judgment variables as well extra 

restrictions those put the optimization problem 

more difficult also further multiplexed to evaluate 

hence, the best selection is a balance of response 

with calculations attempt. 

 

6.2.The effect of changing the prediction 

inhorizon  MPCofperformancethe

controller. 

 

 In Model Predictive Control, the expectation 

skyline, Np is likewise a significant thought.The 

performance of MPC controller effected when 

changing the prediction horizon when sampling 

time (Ts=0.01sec),control horizon(Nc=4),output 

weight (yo=10) Input weight (yu =0.1) as shown 

in Figure 13 and table 7 

 

 

 Fig .12  Effect of changing prediction horizon 

 

Table 7:The Effect of changing Np  in MPC 

controller 

Prediction 

horizon 

Rise time 

(sec) 

Settling  time 

(sec) 
Overshoot 

15 0.1246 1.6092 37.5226 

20 0.1616 0.4790 8.7928 

30 0.2448 0.4796 2.5333 

45 0.2803 0.6545 0 

 

 

The previous result shows that when the 

prediction horizon  increased the overshoot  

decreased  but the rise time and settling time 

increased . However, larger Np values lead to 

more decision variables which lead to a larger 

optimization problem the  dimensions of many 

matrices in the MPC optimization problem are 

proportional to Np with longer execution times 

and higher memory requirement  and QP solution 

time increase. 

 

 

6.3.The effect of changing the control horizon  

in the performance of MPC controller. 

        Control horizon (Nc) is the number of 

samples within the prediction horizon where the 

MPC controller can affect the control action. The 

control horizon falls between 1 and the prediction 

horizon Np .The performance of MPC controller 

effected when changing the prediction horizon 

when sampling time (Ts=0.01sec),prediction 

horizon(Np=20),output weight (yo=10) and Input 

weight (yu =0.1) is show in Figure 13 and table 8. 
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       Fig .13 The effect of changing the control 

horizon in MPC 

 

Table 8: Effect of changing Nc in MPC controller 

Control 

horizon 

 

Rise time     

(sec) 

Settling  time 

(sec) 

Overshoot 

 

2 

 

 

0.1718 

 

0.4783 
 

0 

 

6 

 

 

0.1616 

 

0.4790 
 

8.7928 

 

8 

 

 

0.1540 

 

0.6702 
 

12.7250 

 

12 

 

0.1523 

 

0.6761 
 

13.5717 

 

 

Little Nc implies less factors to register in the QP 

addressed at each control span, which advances 

quicker calculations.  

 In the event that the plant incorporates 

delays, Nc < Np is fundamental. Something else, 

some MV moves probably won't influence any of 

the plant yields before the finish of the forecast 

skyline. Small Nc promotes an internally stable 

controller. 

7. comparison between the responses of the 

control system based on simulink and 

LabVIEW programs 

The MPC design  has been designed in  both 

MatLab19b Simulink tool box and LabVIEW 

simulation toolbox with the parameters shown in 

table 3 and  the m. files,the as well as as 

illustrated in Figures  14 and ,15 

 

 

 

 

 
Fig. 14 The step response of  MPC controller 

using labview   simulation tool box. 

 

 
Fig. 15 The step response of  MPC controller 

using MatLab19b Simulink tool box. 

 

Table 9: the responses of the control system based 

on simulink and LabVIEW programs. 

 
Performance 
parameters 

 
SIMULIMK 
IN MATLAB 

 
labview   
simulation 
tool box. 

 
Settling time 

 
0.2387 sec 

 
0.2395sec 

 
Rise time 

 
0.1489 sec 

 
.1482 sec 

 
Overshoot 

 
0% 

 
0% 

 

 

8 .CONCLUSION 

 The MPC controller are designed in this 

paper to increase the performance of DC Servo 

Motors. Various methods, such as ASM and 

IIPare used to design MPC controller by 

MatLab19b  and labview   simulation tool box. 

Several metrics are used to evaluate the 

performance of the designed optimal controllers, 

including rise time, maximum overshoot, settling 

time, execution time, and cost.  
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 تصميم وتنفيذ نموذج المتحكم التنبئي

  ذكوان محمد سليم                                      هبه عبد الكريم صالح                                                    
                    thakwan59@gmail.com                                                                               heba39566@gmail.com 

 قسم هندسة الحاسوب -كلية الهندسة  -جامعة الموصل 

 

 الملخص

مشكلة كبيرة في فرضية التحكم الحالية. يقدم هذا العمل متابعة الموقف والتنبؤ  DCيعد التحكم في الموضع المحدد لمحرك مؤازر  
باستخدام تقنية تحكم بديلة. تقنية التحكم مطلوبة للحد من خطأ الحالة المتسق وتقليله. يتم استخدام وحدة تحكم تنبؤية  DCبمحرك مؤازر 

تخطيط وتحقيق هذه المتطلبات الأساسية. يتم تقديم نوعين من تقنيات التحكم في هذه المهمة. تم استخدام استراتيجية المجموعة ل MPCنموذجية 
، كاستراتيجيات تحكم. يميز هذا العمل ويصور قرارات الخطة المحددة بنوعين من وحدات  IIP، وتقنية النقطة الداخلية  ASMالديناميكية 

لحكيم لمحرك مؤازر يعمل بالتيار المستمر. تم تأكيد تنفيذ هذه الهيئات التنظيمية من خلال الاستنساخ باستخدام برمجة التحكم والمنظم ا
MATLAB / SIMULINK كما يتضح من نتائج الاستجمام ، فإن المقارنات بين .ASM  وIIP كانت استراتيجية الضبط بارعة بشكل متزايد .

على سبيل المثال ، تقليل وقت الصعود ، ووقت الاستقرار ، وأبرز تجاوز في التحكم في موضع محرك سيرفو  في تحسين سمات تفاعل التقدم ،
DC توفر تقنية المنظم الإدراكي النموذجي أفضل تنفيذ وتعميم لتقنية .MPC  المتاحة على وحدات التحكم الأخرى 

 الكلمات الدالة:
 .IIP، تحكم تنبؤي ،  DC  ،MPC  ،ASMمحرك سيرفو 
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