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ABSTRACT

The precise position control of a DC servo motor is a major concern in today's control theiy.
work presents position following and forecast of DC servo engine utilizing an alternate control technique.
Control technique is required to limit and diminish the consistent state error. A model predictive controller
MPC is utilized to plan and actliae these prerequisites. Two sorts of controlling techniques are presented
in this task. TheActive Set MethodASM), the inside point techniqu@IP), and have been utilized as
controlling strategies. This work distinguishes and depicts the plan deziglentified with a two sorts of
controllers and judicious regulator for a DC servo motor. Execution of these regulators has been confirmed
through reproduction utilizing MATLAB/SIMULINK programming. As indicated by the recreation results the
Comparisons mong ASM, IIP. The tuning strategy was increasingly proficient in improving the progression
reaction attribues, for example, decreasing the rigme, settling time and most prominent overshoot in

Position control of DC servo motor.
Keyword:
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1. INTROD UCTION

It is very basic to design a control system that
would deal with the problem of nonlinear effects
that excessively influence theeady operation of
our electric engines.DCSM(D.C
Servaviotor)straightforward engine which is
generally controlled for explicit precise revolution
with the guide of an uncommon course of action
ordinarily a shut circle input control framework
called SERVOMECHANISM. The DCSM has
such a significant number of utilizatis. A
portion of the applications are found in far off
controlled toy vehicles for controlling course of
movement and it is likewise utilized as the engine
which moves the plate of a CD or DVD player.
The principle purpose for utilizing a servo is that
it gives high accuracy for example it will just
turn as much we need and afterward stop and
hang tight for next sign to make further move.
This is not normal for a typical electrical engine
which turns over pivoting as and when force is
applied to it and theevolution proceeds until we
switch off the power, MPC and furthermore

called control horizon, retreating horizon or
quadric programming control. MPC is an input
calculation that utilizes a model to anticipate the
future yield of the procedure by takingre of an
advancement issue at each time venture to locate
the ideal activity of the control by which the
anticipated yield of the procedure become close
as conceivable to the ideal reference or the
objective by limiting the blunder between the
reference ad the anticipated yield ,MPC is a
control innovation which can be set up with the
capacity to deal with the issue of streamlining
with imperatives, it is utilized in numerous
applications, for example, physical procedures
automated control framework, pethemical
industry. The center of the MPC controller is to
take care of a limited advancement issue on the
web so that in the greater part of MPC
frameworks the online computational
multifaceted nature results executed by a PCs of a
superior [1].

2. Literature Review
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In 1960, Kalman are right off the bat chipped
away at straight MPC. Kalman said that the plant
which can be constrained by a direct control can
be improved. After that LQ@inearQuadratic
Regulator)was driven and intended to make a
minimization of unconstraint quadratic capacity
of information and states. Due to the Howearity
of the most plants that utilized in industry and
there is no imperative of it LRQ isn't generally
utilized in the business. Then Dynamic Matrix
Control (DMC), contrived by Shell Qil , and a
related methodology created by ADERSA have
very comparative capaciti§¢g].

A versatle MPC procedure Generalized
Predictive Control (GPC) has additionally gotten
significant consideration3]. In 2003 Both Ruth
Millman and Joseph Davison maintained the
algorithm New programming solution (QP)
squared control Updated time bellow of the
effective group algorithm (active group) based
directly on multiplication methods Lacran
multiplier And equations of determinants, and
variousof this method The primargecondary of
the middle point (inner double inner poifd).

In 2009 was carried out by researchers
P.D.Dimitrion, et al. , represent reahe
predictive control based on the MPC An

embedded microcontroller using SoC tedbgy
within a chip ,the chip as an assistant processor
performs calculations to calculate the optimal
point in the programming solution Using the
logarithmic numbering system (LNS) to represent
the numbers[5]. In 2010 D. Wilson et al.,
represented consittive predictive control On the
model with simple requirements using both
matrix field programmable gates Spartan 3,
Digital Signal Processing Chips (DSP chips),
Microcontroller ~ Microcontroller  (PC)  for
designing embedded applicatiof§]. In 2011,
J.LJamez, E.C.Kerrigan represents quadratic
programming in a matrix of programmable field
gates for linear control For linear operations, the
specifiers within the modddased predictive
control have been wused Parallel Tubing
Technology to Reduce Quadratic Pramgming
Time [7].

In 2013 Vihangkumar V. Naik, et al. design
Model Predictive Control of DC Servomotor
using Active Set Metho@]. In 2013 ,J.L.Jerez,
P.J.Goulart, represent the modelsed predictive
control on the gates matrix Virtex 6
programmable,using fast gradient method to
solve quadratic programming (QP) with the use of
a decimal point(fixed point numbers [9]. In
2016 Zidong Wang et al.,design Robust model
predictive control under redundant channel

transmission with applications in netwotk®C
motor systemd[0]. In any case, writing study
shows that few control procedures were proposed
for the DCSM. h 2016 researcherst al.,design
Model Predictive Climate Control of a Swiss
Office Building [15].

3. D.C. Servo Motor Analysis

In this researchthe dc servo motor has been
consider as dinear SISO (Single Input Single
Output) systemhaving third order transfer
function The speed and position of a DC servo
engine can be fluctuated by controlling the field
transition, the armature opgition or the terminal
voltage applied to the armature circuit. The three
most basic position control strategies are field
obstruction control, armature voltage control, and
armature opposition control. Here the armature
voltage control has been considenedight of the
fact that servo engine is less delicate to change in
field current. In force condition field motion is
adequately huge. Consequently, every little
change in armature current, la, turns out to be a
lot of touchy to the servo engine, herensier
the armature contled DC servo engine
framework.The structure of the Armature
controlled DC servo motor is shown in Figure 1

(1

B
Fig. 1LArmature controlled DC servo motar[h

Mathematical model for DC motof{i6]:

S i 0
Oi YOY'Y 0%Y6 0 0

Where Ra, La, J, and B, are the servo motor

armature resistance and inductance, torque
friction constant, and flux motor density
respectivel y. Whil e, Ea,

armature voltage and current, motepltage,
torque, and motor displacement respectiyely
order to simplifythe calculations, i, Ky (The
motor torque and motor constants respectively
are considered having the same values and
replaced by.

4. MPC Problem Analysis
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Model predictive control is a model based
optimal control method that solves the
constrained finitehorizon optimization problem
by predicting the future behavior of system
variables using the current state of the system at
each sampling time. The predatis along the
prediction and control horizon are calculated in
order to minimize a cost function that generally
depends on error and control signal. Only the first
element of the obtained optimal control sequence
is applied to the real system and the whole
algorithm is repeated by measuring or observing
the system output at the next sampling time. In
the method, the cost function to be optimized
depends on error and control signals along
prediction and control horizon, respectively .

The optimal control equence that minimizes
the cost function is obtained along the control
horizon by using the prediction of system states.
Only the first element of the sequence is applied
to the real system and the whole algorithm is
repeated by measuring or estimating #ystem
output at the next sampling time. The receding
horizon control strategy provides the system a
feedback and in this way, it is possible to
compensate the modeling errors and the
disturbances that affect to the systgrmy7], [18].
Basically, a MPC lop consists of a system
model, a cost function and a optimization tool.
There are two essential parameters in the loop:
Prediction horizonN, and control horizonNc.
Whereas the prediction horizon refers to the
length of horizon to be predicted, the cohtro
horizon defines the number of elements in the
candidate control sequence to be applied to the
system during the prediction horizon. Therefore,
the inequalityN< N, must always be satisfied and
the elements after thd. " of candidate control
sequencenust be equal to thi. ™ element of
the sequence. is shown in Figure. 2 The basic
structure of MPC[19], [20].

Predicted outputs reference
Model . -
Candidate Candidate errors
control signals Ontimi
imizer »
P optimal control System
T T signal
Cost constraints

function

Fig. 2 The basic structure of the model predictive
control21].

4.1 Discretetime MPC State Space Analysis

In this section, fundamental thoughts and
terms about the discrete model prescient control
will be introduced. The reason for using the
discrete state space analysis is that for the
facilities and the wide range of computational
flexibilities available inthe discrete analysis. The
same state space analysis discussed in the
previous section will be repeated with discrete
time domain and more details. For
straightforwardness, we start our examination by
accepting that the basic plant is a solitary
information and singleyield framework, depicted

by [22):
g+ p ! @+ " O+h C
U # @ + o

where u is the controlled variable or info
variade; y is the cycle yield; an®@ + is the
state variable ector with accepted measurement
nl. Note that this plant model has u(k) as its info.
Subsequently, we need to change the model to
suit our plan reason in which an integrator is
installed. Note that an overall plan of a state
space model has an immediatentdrom the info
signal u(k) to the yield y(k) as :

U+ #@ + $ O+ T

In any case, because of the rule of subsiding
skyline control, where a current data of the plant
is needed for expectation and control, we have
verifiably accepted that the info u(k) can't
influence the yield y(k) simultaneously. In this
way, Dm = 0 in the plant model. Taking a
distinction procedure on the two sides 4f, (we
get that

g+ p D +

' g+ @+ p

" O+ O+ »p v
Let us denote the differencd the state variable
by
300 p ® U p ® UA
30 WU ®wUL p 0]
And the difference of the control variable by:
30 U 6L O0UL p

X
These are the additions of the factors x_m
(K) and u(K). with this change, the distinction of
the statespace condition is:
3w U p O3 UL 063008 Y
Note that the contribution to the state model

is Au( K) . The subsequent
Ax m ( K) t o t he y iuehl d
another state variable vector is picked to be

wo 3® 0 ®O h W

WO p WL 6 WO p WO
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60 3 U
66 300 p T
Putting together @) with (10) leads to the
following statespace model:

30 L P 0 m 3w U
wou p 60 P WL
0 C o
66 OV PP
o 3w U
(V] TP o (12)
Where 1t a3t the trio (AB,C) is

known as the model, which will be utilized in the
plan of prescient control

4.2. MPC of State and Output Variables inside
One Optimization Window

Over the detailing of the numerical model,
the subsequent stage in the plan of a prescient
control framework is to figure the anticipated
plant yield with the future control signal as the
movable factors. This expectation is depicted
inside an improveent window. This part will
inspect in detail the enhancement inside this
window. Here, we accept that the current time is
ki and the length of the enhancement window is
Np as the quantity of tests. For
straightforwardness, the instance of single
information and singlejield frameworks is
viewed as first, at that point the outcomes are
stretched out to mulinput and multiyield
frameworks.

Expecting that at the inspecting moment ki,
ki > 0, the state variable vector x(ki) is accessible
through estimatin, the state x(ki) gives the
current plant data. The more broad circumstance
where the state isn't straightforwardly estimated
will be talked about later. The future control
direction is meant by
Aduif k i4bu@h, i+Ne—, I 4B k

where Nc is known as the control skyline
directing the quantity of boundaries used to catch
the future control direction. With given data x(ki),
the future state factors are anticipated for Np
number of tests, wheré&p is known as the
forecast skyline. Np is additionally the length of
the streamlining window. We indicate the future
state factors as

x(k + 1| k), x(k + 2| k), ..., x(k+ m | k), ...,
X(ki + Np | k) 14

where x(ki+m | ki) is the anticipated state
variable at ki+m with given current plant data
xX(k~i). The control skyline Nc is picked to be not
exactly (or equivalent to) the forecast skyline
N-p. In light of the statspace modelA, B, C),
the future state factors are determined
successively utilizing the arrangement of future
control parameters[31]:
w0 psv 0 v 030 0
w0  ¢sU 00 pY 6360 p

0 WU 0&00 6360 p

WO 0 630 U
0 6360 p
E o 6300 O p8 (15
From the predicted state variables, the predicted
output variable are, by substitution

wb 0 0 0

GO psy 0D bBOO

GO sy BO w0 6 OBO U
&6 0 p

GO os0 85 w0 60 630 0
508 0 p
&6 0

GO 60 80 U 88 630 U
86 6360 p

E

86 6360 O

p8 PO

Note that all anticipated factors are defined as
far as present status variable data x(ki) and the
future cornrol movement4 u i#j% where j = 0O,

1,.N— 1. Define vectors:
9
WL PY WL ¥ o
o 88&0 0 U P X
3Y 300 300 p3dL ¢ 8&BOO
o p Py

where in the singknformation and single
yield case, the component of Y is Np and the
ele me nt of AU is )lMdnrd.(8 We
together in a minimized network structure as:
® "0Ov Y (29)
Where
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00,
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For a given sepoint signal r(ki) at test time ki, I
inside a forecast skyline the goal of the prescient - —

controlframework is to bring the anticipated yield | Chrkas ot ety g pim gt |
as close as conceivable to the-geint signal,
where we accept that the set point signal | Simulate close loop response and observe the transient and steady state response ‘

remaining parts consistent in the advancement -

window.
No

This goal is then made an interpretation of into a
plan to track dwn the 'best' control boundary
vector AU with the end ¢
between the sqioint and the anticipated yield is
limited. Accepting that the information vector that
contains the seqtoint data is:

% ppaBp O+ h ¢p

We characterize the expense work J that mirrors
the control unbiased as Fig. 3 Model predictive controller design

2 9 2 9 35235 ¢¢q flowchart
The structure of MP@& shown in kgure 3.

r wor k

Performance sanctified after

Iteration Ne Np Q.R

4.3 Active Set Methods(ASM)

The idea of active set methods is to define at
each step of an algorithm a set of constraints,
termed the working set, that is to be treated as the
active set, The working set is chosen to be a
subset of the constraints that are actually active at
the curent point, and hence the current point is
feasible for the working set then the algorithm
proceeds to move on the surface defined by the
working set of constraints to an improved point at
each step of the active set method, an equality
constraint problenis solved , If all the Lagrange

multipliers Ai > 0, t hen t
solution to the original problem if, on the other
hand, there exists a Al <

function value can be decreased by relaxing the
constraint i (i.e., deleting ifrom the constant
equation)[18],[19] .
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Start

‘ Simplify the problem by simplifying constraints ‘

l

‘ Compute a feasi‘ble starting point ‘
|
| Solve the equality problem defined by the active set ‘ ‘
|
| Find the Lagrange multipliers of the active set | ‘
|
| Remeve constraints with a negative multipliers | ‘

l

| Find the infeasible constraints ‘ ‘
,./"/ T No
-~ Optimal enough \'“3\

T L
R

End

Fig .4 ASM flowchart

4.4. Infeasible Interior Point (lIP)

Interior point methods are guaranteed to
converge, within a given accuracy, much faster
than QP algorithms. Inside point strategies tackle
issues iteratively to such an extent that all repeats
fulfill the imbalance limitations rigorously. They
approach therrangement from either the inside
or outside of the doable district yet never lie on
the limit of thisregion ,to set up the conditions
empowering us to plan the inside point technigues
by defining a Lagrangian capacity, the general
theory on compelledrdhancement has been used
and setting up Karuskuhn-Tucker (KKT)
conditions for the QP's we wish to settle
[20],[21].

Start

Make the problem simple by removing redundancies and simplifying constraints

Generate initial point

¢
<

tries to find a point where the Karush-Kuhn-Tucker (KKT) conditions hold

infeasibility
detection

owchart

5. D.C servo motor simulation

The D.C. servo motor of the plant has been
implemented with th@arameters shown in the
tablel and simulated using MatLab19b m. files
and Simulink tool box

Table 1:D.C. servo motor parametd?]

Parameters Value
J:Moment of inertia othe motor( Kgm

0.016
/rad)
B:Viscous friction coefficient | 0.1
(Nm/(rad/sec))

L:Armature inductance (H) 0.01

wY! N¥YI GdNBE NBaAad|1

Krv:  Electromotive force constan

(Vs/rad)

0.04

Ko: Back emf constant of motor | 0.04

volt/(rad/sec))

Al-Rafidain Engineering Journal (AREJ)

Vol.27, No.1, March 202, pp.219-230



Hiba Abdulkareem Saleh Designand Implementation of Model...........

225

Amaure Load

( ) wof) | S 0
- denfs) | Torue | denls) u ’

dLesR) ks#h) theiz

G
N

A
N

Fig. 6 Simulink schematic of DC motor control
system

The m. files codes utilized to present the
operation of the D.C servo motor plant, transfer
function. The Simulink step response illustrated
in Figure7 and The step response characteristic
of the paition of dc servo motor such as the peak
overshoot, the settling time, and thge time are
illustrated table 2

Step Response

0 4 6 8 10 12 14
Time (seconds)

Fig .7 Step response of the position of D.C. servo
motor using matlab m file

Table 2: Characteristics of the step response of
D.C servo motor

Characteristics Value
Rise time 5.2061 sec
Settling time 9.4213 sec
Overshoot 0%

6. MPC Design and Simulation

The MPC design has been designeish both
ASM and IIP algorithms withhe parameters
shown in table 3and havebeen represented via
two MatLab19b techniques, the m. files ,the
Simulink tool box as well as LabVIEW
simulation toolboxas illustated in Figures 8,9,10

Table3:The parameters that used to design MPC
controller in ASM and IIP

Parameter Value
Samplingtime 0.01 sec
Prediction horizon 20
Control horizon 4

Input weight 0.1
Output weight 10

Input constraint -10<u<10
Output constraint O<y<1

S mur @

Oulputs
m— =

Fig. 8 Simulink model of DC Servo Motor control

system based on MPC controller
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Fig.. 9 The stepresponse of both MPC controller
algorithms using m.file.

From table4 the performance parameters of the
MPC controller that designed in both ASM and
IIP are in the same values expected the execution
time of both algorithms that show that the
designed MPC controller in the IIP algorithm has
less execution time compared withe MPC
controller that designed in ASM algorithms, this
is because the Active set algorithm will perform
a calculation to find feasible starting poiphis
requires more math operations and more tis

well as the step response of the designed MPC
controller, shows the effect of the constrain in the
output when (0<y<1).

Table 4The perfomance parameters by
designing MPC controller

Performance algorithm IIP ASM algorithm
parameters

Settling time (sec) 0.2387 0.2387 sec
Rise time (sec) 0.1489sec 0.1489 sec
Overshoot 0% 0%

Execution 40.5469 26.8438
time(period=1/fc)

Cost function value 2.1296e09 2.1296e09

Comparing the performance of the D.C servo

motor with MPC controller and the performance

of the D.C servo motor without a controller there

is an enhancement in the performance of the D.C
servo motor when the MPC controller has been
usedto control it as kown in table 5

Fig.. 10 Designing MPC controller by using
simulation in LabVIEW program

Table 5:The performance enhancement by MPC
controller

Performance | algorithm IIP | ASM servo
parameters algorithm motor
Settling time | 0.2387 sec | 0.2387 sec| 9.4213
sec
Rise time 0.1489 sec | 0.1489 sec| 5.2061
sec
Overshoot 0% 0% 0%

6.1.The effect of changing
time(Ts) in the performance of
controller.

The sample time is a key concept in
model predictive control. The effect of changing
the sampling time in the performance of MPC
controller when prediction horizon (Np=20),
control horizon(Nc=4), output weight (yo=10)
Input weight (yu =0.1) is shown in Rkige 12 and
Table6.

the sampling
MPC
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Ts=0.6
Ts=0.3
- Ts=0.2
Ts=0.01

0 1 2 3 & 5 6 7 8 9
Time (seconds

weight (yo=10) Input weight (yu =0.1) ahown
in Figure 13 and table 7

Fig .12 Effect of changing prediction horizon

Table 7:The Effect of changing Np in MPC
_ ) o controller
Fig . 11 Effect of changing sampling time value [F5regiction| Rise time Settling time
: Overshoot
Table 6: Effect of changing Ts in MPC | horizon | (sec) (sec)
controller 15 0.1246 | 1.6092 37.5226
Sampling time | Rise  time | Settling time | Overshoot
(sec) (sec) (sec) 20 0.1616 0.4790 8.7928
0.6 0.9001 1.1433 1.0331
03 0.5525 1.2054 > 6474 30 0.2448 0.4796 2.5333
0.2 0.4875 1.0874 3.0444 45 0.2803 0.6545 0
0.01 0.1718 0.4783 5.0361

From the previous result that illustrated in Figure
12 and the table éhat shows when the value of
sampling time become small the overshoot
parameter will be increased but the rise time and
settling decreased.

When Ts turns to low value, the evaluation
attempt also implementation period increment
effectually as theMPC maximization case is
evaluated rather generally. Rapid Ts will need a
more estimation horizon to maintain the
estimation period steady.

Nevertheless, as discussed in the Prediction
Horizon section, more prediction horizons direct
to further judgmentvariables as well extra
restrictions those put the optimization problem
more difficult also further multiplexed to evaluate
hence, the best selection is a balance of response
with calculations attempt.

6.2.The effect of changing the prediction
horizon in the performance of MPC
controller.

In Model Predictive Control, the expectation
skyline, Np is likewise a significant thought.The
performance of MPC controller effected when
changing the prediction horizon when sampling
time (Ts=0.01sec),control horiz@c=4),output

The previous result shows that when the
prediction horizon increased the overshoot
decreased but the rise time and settling time
increased . Howeverarger Np values lead to
more decision variables which lead to a larger
optimization problem the dimensions of many
matrices in the MPC optimization problem are
proportional to Np with longer execution times
and higher memory requirement and QP solution
time increase.

6.3.The effect of changing the control horizon
in the performance of MPC controller.

Control horizon (Nc) is the number of
samples within the prediction horizon where the
MPC controller can affect the control action. The
control horizon falls between 1 and the prediction
horizon Np .The performance of MPC controller
effected when ltanging the prediction horizon
when sampling time (Ts=0.01lsec),prediction
horizon(Np=20),output weight (yo=10) and Input
weight(yu =0.1) is show in Figurgé3 and tables.
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\ Nc=2
{ \ Nc=6
Nc=8
Np=12

1

2

3

6

7

0 K
Fig .13 The effec
horizon in MPC

t ofw ch

8
anging the co

9

ntrol

Table8: Effect of changing Nc in MPC controller

12

1
0.8 {

0.6

0.4

0.2

0

1 2 3 4 5 6 7 8 9 10

Fig. 14 The step response of MPC controller
using labview simulation tool box.

12

1 4+

0.8

Control Rise time Settling time | Overshoot
horizon (sec) (sec)
2

0.1718 0.4783 0
6

0.1616 0.4790 8.7928
8

0.1540 0.6702 12.7250
12 0.1523 0.6761 13.5717

0.6

0.4

0.2

0

1 2 3 4 5 & 7 8 9 1w
Fig. 15 The step response of MPC controller
using MatLab19b Simulink tool box.

Table 9:the responses of the control system based
on simulink and LabVIEW programs.

Little Nc implies less factors to register in the QP
addressed at each control span, which advances
quicker calculations.

In the event that the plant incorporates
delays, Nc < Np is fundamental. Something else,
some MV moves probably won't influence aofy
the plant yields before the finish of the forecast
skyline. Small Nc promotes an internally stable
controller.

7. comparison between the responses of the
control system based on simulink and
LabVIEW programs

The MPC design has been designed in both
MatLab19b Simulink tool box and LabVIEW
simulation toolbox with the parameters shown in
table 3 and the m. files,the as well as as
illustrated in Figuresl4 and,15

Performance | SIMULIMK labview
parameters | IN MATLAB | simulation
tool box.
Settlingtime | 0.2387 sec | 0.2395sec
Rise time 0.1489 sec | .1482 sec
QOvershoot 0% 0%

8 .CONCLUSION

The MPC controller are designed in this
paper to increase the performance of DC Servo
Motors. Various methods, such as ASM and
lIPare used to design MPQontroller by
MatLab19b andlabview simulation tool bax
Several metrics are used to evaluate the
performance of the designed optimal controllers,
including rise time, maximum overshoot, settling
time, execution time, and cost.
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