Document Type : Review Paper


1 Department of Electrical Engineering, College of Engineering, University of Mosul, Mosul, Iraq

2 Department of Electrical Engineering, College of Engineering, University of Mosul, Mosul, Nineveh, 41002, Iraq

3 School of Electrical and Electronic Engineering; Newcastle University, Newcastle, United Kingdom.


This paper reviews prior investigations into low noise amplifier (LNA) design. In this work, various modern LNA architectures will be examined, with a focus on five technologies: Cascode Distributed LNA, Coupled-Line Feedback in 0.15-m GaAs pHEMT Technology, Dual-Band CMOS LNA in 65-nm CMOS, CMOS LNA Using Post-distortion technique and 22-nm FD-SOI CMOS. In this review, Low power dissipation rate, input and output synchronization, high gain, and low noise levels are examined. In order to design a new successful LNA, each topology's performance is then examined. Future research will be conducted based on comparisons of these five topologies.


Main Subjects

  1. Omar El-Aassar; Gabriel M. Rebeiz " Design of Low-Power Sub-2.4 dB Mean NF 5G LNAs Using Forward Body Bias in 22 nmFDSOI",Year:2020 | Volume: 68, Issue: 10 | Journal Article | Publisher: IEEE
  2. Yanhui Lu1, Qinghua Tang" Design of a 1GHz~4GHz ultra-wide band low noise amplifier" 978-1-4244-7941-2/10/$26.00 ©2010 IEEE, doi: 10.1109/ICIECS.2010.5677741
  3. Mohammad Billa "6-9 GHz Low-Noise Amplifier Design Implementering"Master of Science Thesis carried out at the Department of Science and Technology (ITN) in Linköping University, June 14, 2010
  4. Tran Van Hoi " Study and design of wide band low noise amplifier operating at C band", Vietnam Journal of Mathematics · April 2013
  5. Vikas Chauhan, Nadine Collaert" A 120–140-GHz LNA in 250-nm InP HBT ", IEEE, 5 July 2022, doi: 10.1109/LMWC.2022.3189607
  6. Deepak Prasad, Krishna Datta" A novel design of UWB low noise amplifier for 2–10 GHz wireless sensor applications ", Sensors International 21 September 2020, doi:
  7. F. Ellinger, Radio Frequency Integrated Circuits and Technologies, Springer Germany, Berlin, 2007.
  8. Xu Yan, Haorui Luo "Design and Analysis of a Cascode Distributed LNA With Gain and Noise Improvement in 0.15-μm GaAs pHEMT Technology", IEEE, VOL. 69, NO. 12, DECEMBER 2022, doi: 10.1109/TCSII.2022.3196817
  9. C.-Y. Hsiao, T.-Y. Su, and S. S. H. Hsu, “CMOS distributed amplifiers using gate–drain transformer feedback technique,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2901–2910, Aug. 2013.
  10. G. Nikandish and A. Medi, “Unilateralization of MMIC distributed amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3041–3052, Dec. 2014, doi: 10.1109/TMTT.2014.2361341
  11. C. Xie, Z. Yu, and C. Tan, “An X/Ku dual-band switch-free reconfigburable GaAs LNA MMIC based on coupled line,” IEEE Access, vol. 8, pp. 160070–160077, Aug. 2020.
  12. B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed. New York, NY, USA: McGraw-Hill, 2017.
  13. K. W. Kobayashi, D. Denninghoff, and D. Miller, “A novel 100 MHz-45 GHz input-termination-less distributed amplifier design with low-frequency low-noise and high linearity implemented with a 6 Inch 0.15-um GaN-SiC wafer process technology,” IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 2017–2026, Sep. 2016, doi: 10.1109/JSSC.2016.2558488
  14. A. Bevilacqua, “Fundamentals of integrated transformers: From principles to applications,” IEEE Solid StateCircuits Mag., vol. 12, no. 4, pp. 86–100, Fall 2020, doi: 10.1109/MSSC.2020.3021844
  15. O. El-Gharniti, E. Kerhervé, and J.-B. Bégueret, “Modeling and characterization of on-chip transformers for silicon RFIC,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 4, pp. 607–615, Apr. 2007, doi: 10.1109/TMTT.2007.893647
  16. Xu Yan, Jingyuan Zhang "A Broadband 10–43-GHz High-Gain LNA MMIC Using Coupled-Line Feedback in 0.15-μm GaAs pHEMT Technology" IEEE, VOL. 32, NO. 12, DECEMBER 2022, doi: 10.1109/LMWC.2022.3193007
  17. Kopa and A. B. Apsel, “Distributed amplifier with blue noise active termination,” IEEE Microw. Compon. Lett., vol. 18, no. 3, pp. 203–205, Mar. 2008, doi: 10.1109/LMWC.2008.916814
  18. C.W. Kim, M.S. Kang, P.T. Anh, H.T. Kim, S.G. Lee" An ultra-wideband CMOS low noise amplifier for 3–5 GHz UWB system" IEEE J. Solid State Circ. 40 (2005) 544–547, doi: 10.1109/JSSC.2004.840951
  19. Jiye Liu, Shubin Liu"A 28-/39-GHz Dual-Band CMOS LNA With Shunt-Series Transformer Feedback" IEEE, VOL. 33, NO. 1, JANUARY 2023, doi: 10.1109/LMWC.2022.3201087
  20. B. Razavi, "Design of Analog CMOS Integrated Circuits, 2nd ed". New York, NY, USA: McGraw-Hill, ISBN 0-07-252493-6 (alk. paper) 1.
  21. T.-K. Nguyen, C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1433–1442, May 2004, doi: 10.1109/TMTT.2004.827014
  22. Jiye Liu, Shubin Liu" A 26–31 GHz Linearized Wideband CMOS LNA Using Post-Distortion Technique", IEEE, VOL. 32, NO. 9, SEPTEMBER 2022, doi: 10.1109/LMWC.2022.3168086
  23. Z. Pan, C. Qin, Z. Ye, and Y. Wang, “A low power inductorless wideband LNA with Gm enhancement and noise cancellation,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 1, pp. 58–60, Jan. 2017, doi: 10.1109/LMWC.2016.2629969
  24. H. Zhang, X. Fan, and E. S. Sinencio, “A low-power, linearized, ultra-wideband LNA design technique,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320–330, Feb. 2009, doi: 10.1109/JSSC.2008.2011033
  25. S. Mondal and J. Paramesh, “A reconfigurable 28-/37-GHz MMSEadaptive hybrid-beamforming receiver for carrier aggregation and multistandard MIMO communication,” IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1391–1406, May 2019, doi: 10.1109/JSSC.2018.2888844
  26. V. Bhagavatula, T. Zhang, A. R. Suvarna, and J. C. Rudell, “An ultra-wideband IF millimeter-wave receiver with a 20 GHz channel bandwidth using gain-equalized transformers,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 323–331, Feb. 2016.
  27. Enis Kobal, Teerachot Siriburanon''A Compact, Low-Power, Low-NF, Millimeter-Wave Cascode LNA with Magnetic Coupling Feedback in 22-nmFD-SOI CMOS for 5G Applications', IEEE, VOL. 70, NO. 4, APRIL 2023
  28. O. El-Aassar and G. M. Rebeiz, “Design of low-power sub-2.4 dB mean NF 5G LNAs using forward body bias in 22 nm FDSOI,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 10, pp. 4445–4454, Oct. 2020, doi: 10.1109/TMTT.2020.3012538
  29. Kateryna Smirnova, Christian Bohn" Ultralow-Power W-Band Low-Noise Amplifier Design in 130-nm SiGe BiCMOS"IEEE, d 21 May 2023, doi: 10.1109/LMWT.2023.3279574