
Ali: Depth Buffer DDA Based on FPGA

28

Depth Buffer DDA Based on FPGA

Fakhrulddin Hamid Ali
Computer Engineering Departement

University Of Mosul
Email: fhali310@yahoo.com

Abstract

The Digital Differential Analyzer (DDA) is normally used to efficiently compute
the pixels (picture elements) for a straight line segment which can be used to represent
it in a frame buffer or image memory. The calculated integer values of x and y for each
pixel are used to address the memory while the color or intensity of the line segment
presents the data to memory. The pixels in the frame buffer can then be read in a
synchronized manner, while scanning the screen, and displayed on the computer
monitor to show the straight line. This paper presents a new Digital Differential
Analyzer as a three dimension (3D) version of the traditional (2D) one. There is a need
to the 3D-DDA for the solution of the hidden surface problem in the image space when
using depth or Z buffer method in the field of 3D computer graphics. A hardware
implementation of the 3D-DDA is accomplished for the real time applications.

Keywords: DDA, pixel, depth buffer, scan-conversion.

باعتماد البوابات القابلة للبرمجة حقلیاالمحلل التفاضلي الرقمي لذاكرة العمق

فخرالدین حامد علي
العراق–قسم ھندسة الحاسبات في جامعة الموصل

ألخلاصة

محلل الرقمي التفاضلي یستخدم عادة لحساب النقاط الصوریة ال
الصورة حیث تستخدم القیمة المطلقة المحسوبة للاحداثي السیني و القیمة المطلقة المحسوبة للاحداثي

. الصادي لعنونة الذاكرة بینما یستخدم لون المستقیم كبیانات لھا
 .

ا ثلاثي الابعادجدیدارقمیاتفاضلیمحللا
جھ المخفیة باستخدام أسلوب ذاكرة العمق وذلك في أدائھ ثلاثي الأبعاد للاستفادة منھ في حل مشكلة الأو

الصور للأجسام الثلاثیة الأبعاد تطبیقات تولید
. الأداء في الزمن الحقیقي

Received: 20 – 4- 2010 Accepted: 10 – 12 - 2010

mailto:fhali310@yahoo.com

Al-Rafidain Engineering Vol.19 No.5 October 2011

29

1- Introduction
Pictures can be described in several ways. In computer graphic a raster display system

is used to create and show these pictures, where a picture can be completely specified set of
intensities for the pixel positions in display. A major task of the display process is digitizing a
picture given in an application program into a set of pixel intensity values for storage in the
frame buffer. This digitizing process is called scan-conversion. This requires access to the
frame buffer for a huge number of times that makes it essential to adopt a fast scan-
conversion algorithm in any real time system. However, the scan conversion of a polygon (a
graphic major building primitive) is performed a line (or scan line) by line. The
rasterization of a straight line segment can be accomplished using the line drawing algorithm
called a Digital Differential Analyzer (DDA). On the other hand, it can also be done using
Bresnham's algorithm (a modified DDA) which uses integer mathematics only. However,
each of them operates in the image or 2D space and produces the same pixels for a line
segment. Thus the segment is defined graphically by a set of points or pixels which lie
between two end points or vertices. Since the application of depth or Z-buffer requires the
value of the depth so it is required to generate this value for each pixel produced by the DDA.
This motivates the conduction of this research work.

In 1987 Roman P.Molla designed three systems for different algorithms to implement
scan conversion of a straight line segment. The Digital Differential Analyzer (DDA) and
Bresenham algorithms were implemented using serial processing in addition to the
implementation of the DDA algorithm using parallel processing. In his paper he discussed the
performance , cost and the error ratio for the three designed systems mentioned previously
[1]. In 1990 Arie Kaufman presented a paper introducing three dimensional scan-conversion
algorithm, that scan-convert 3D parametric objects into their discrete voxel (volume element)
map representation within a Cubic Frame Buffer (CFB). The parametric objects that are
studied include Bezier form of cubic parametric curves, bicubic parametric surface patches,
and tricubic parametric volumes. The converted objects in discrete 3D space maintain pre-
defined application-dependent connectivity and fidelity requirements. The algorithm
introduced imply third-order forward difference techniques. Efficient versions of the
algorithm based on first-order decision mechanisms, which employed only integer arithmetic,
are also discussed. All algorithms are incremental and use only simple operations inside the
inner algorithm loops. They perform scan-conversion with computational complexity which
is linear in the number of voxels written to the (CFB) [2] . In 1993 the researchers Andreas
Schilling and Wolfgan Straber introduced an algorithm that deals with hidden surface
elimination problem at pixels level. The algorithm provided the solution of the aliasing
problem resulted in the scan conversion operation. The hardware implementation was divided
into three stages in order to apply the pipeline technique to improve the performance. The
architecture designed from 12000 gates and the chip has ability to produce 20 M pixel/sec
[3]. In 1997 Marc Olano and Trey Greer presented a new triangle scan conversion algorithm
that works entirely in homogeneous coordinates. By using homogeneous coordinates, the
algorithm avoids costly clipping tests which make pipelining or hardware implementations of
scan conversion algorithms difficult. The algorithm handles clipping by the addition of clip
edges, without the need to actually split the clipped triangle. Furthermore, the algorithm can
render true homogeneous triangles, including external triangles that should pass through
infinity with two visible sections [4]. In 2001 Hans Holten-Lund described in his thesis useful
methods and techniques for designing scalable hybrid parallel rendering architectures for 3D
computer graphics. Various techniques for utilizing parallelism in a pipelined system are
analyzed and a prototype 3D graphics architecture named Hybris has been developed.
Working hardware / software code design implementations of Hybris for standard-cell based

Ali: Depth Buffer DDA Based on FPGA

30

ASIC (simulated) and FPGA technologies have been demonstrated. Using manual co-
synthesis for translation of a virtual prototyping architecture specification written in C into
both optimized C source for software and into to a synthesizable VHDL specification for
hardware are implemented. A 3D medical visualization workstation prototype (3D-Med) is
examined as a case study and an application of the Hybris graphics architecture [5]. In 2003
the researchers Khun Yee Fung, Tina M. Nicholl, and A. K. Dewdney presented a new run-
length slice algorithm although run-length slice algorithms are seldom used because of the
division operation required. The biggest advantage of the basic algorithm is the reduction of
additions used which is considered outweighed by the division required. In this paper, the
new run-length slice algorithm that does not require a division operation is presented.
Furthermore, it uses the double-stepping paradigm in incremental line drawing algorithm to
reduce the number of additions used by at least half [6]. In 2004 David Harris discussed the
performance of one of the OpenGL library units. This unit is the lighting unit which is
responsible for light simulation and the brightness. The lighting unit requires the floating
point mathematics which needs a very high processing time. He has introduced a hardware
implementation for this unit using integer mathematic operations only, where the designed
architecture consisted of multipliers and look up tables [7]. In 2005 the researchers Sven
Woop, Jörg Schmittler, and Philipp Slusallek presented a paper describing the architecture
and a prototype implementation of a single chip, fully programmable Ray Processing Unit
(RPU). It combines the flexibility of general purpose CPUs with the efficiency of current
GPUs for data parallel computations. This design allows for real time ray tracing of dynamic
scenes with programmable material, geometry, and illumination shaders. Although, running
at only 66 MHz, the prototype FPGA implementation already renders images at up to 20
frames per second, which in many cases beats the performance of highly optimized software
running on multi-GHz desktop CPUs. The performance and efficiency of the proposed
architecture is analyzed using a variety of benchmark scenes [8]. In 2006 D. Wang et al
presented an antialiasing method using a DSP-based display system for removing the
undesired jaggies occurred in the line drawing. It is concluded in this paper that the
application of antialiasing on color lines takes 60 times the time required without antialiasing
[9].

Beside this section, section 2 presents the hidden surfaces concept supported by the depth
buffer algorithm presented in figure(1). Sections 3 and 4 contain the algorithm of 3D-DDA
and its implementation using FPGA while the test results are in section 5. Section 6 contains
conclusions and the references are listed at the end of the paper.

2- Hidden Surfaces Concept
A major consideration in the generation of realistic images for 3D objects is the

identification and removal of the parts of a scene that are not visible from a chosen viewing
position. Faces are classified as back faces, which are entirely invisible, and front faces which
can be completely visible when they are un covered (not obscured). On the other hand, front
faces can be covered (obscured), partially or entirely, by some part of a 3D object.

The test for and elimination of a back face is direct using the normal to the plane of the
face. The detection and elimination of covered front faces, or parts of them, is more
complicated. Many approaches can be taken to solve this problem and numerous algorithms
have been devised for the identification of invisible objects, or parts of them, for different
types of applications. Some methods require more memory , some involve more processing
time , and some apply only to special types of objects. The various algorithms are referred to
as visible surface detection or hidden surface elimination methods[10]. They are broadly

Al-Rafidain Engineering Vol.19 No.5 October 2011

31

classified according to whether they deal with object definition directly or with their
projected images or with both [11].

Figure (1): Depth buffer algorithm

Calculate Z(x,y)

Yes

No

Yes

start
Start
StartInitialize the Frame Buffer :

Z = max depth & Intensity I = background color

Input the Model

Projection

For each front face or polygon :

Start scan conversion

For each pixel inside the polygon :

Z(x,y)>= Zbuf(x,y) Z(x,y)< Zbuf(x,y)
Z(x,y) :

Zbuf(x,y)?

Zbuf(x,y)=Z(x,y)
Ibuf(x,y) =I(x,y)

New
Pixel?

Display the scene

End

NoNew
polygon?

Ali: Depth Buffer DDA Based on FPGA

32

A commonly used image space method for detecting invisible surfaces is the depth buffer
method [12]. This method (also called z buffer) involves solving the hidden surface problem
by storing the depth of the nearest pixel location to the viewer. A depth buffer (pair of
intensity and z values) can be used to display images and remove hidden surfaces by simply
scan converting all front faces, in a random order, and updating a pixel value only when the
depth of a point that projects on the pixel is less than the depth stored in the buffer. The
buffer requires to be initialized to the background intensity or color and maximum Z before
updating a new image. Aversion of this method is illustrated in figure (1). The major
disadvantage of this method is that it requires additional memory to store the depth or Z value
for each pixel. Semiconductor memories have become cheaper and denser which encourage
adopting this method. OpenGL emerged from silicon graphic which is a software interface to
a graphic hardware and is a low-level graphics library specification which is becoming a
famous standard in the computer graphics field has also adopted this method [13].

Due to the above advances, the DDA requires to be developed and its operation extended
to work in the 3D space. The implementation of the three dimensional digital differential
analyzer (3D-DDA) in hardware is also essential for real time applications.

3- Three Dimensional DDA (3D-DDA)

A new three dimension version of Digital Differential Analyzer is accomplished by
considering the line segment whose pixels require to be generated in three dimensional space.
So for each pixel a z value is calculated in addition to the x and y values so that the algorithm
works in the object space rather than in the image space. The proposed algorithm for the 3D-
DDA becomes like :

Enter the line segment end points (x1,y1,z1) and (x2,y2,z2)
Length = abs(x2 – x1)

if abs(y2 – y1) > Length then
Length = abs(y2 – y1)

increment (x) = (x2 – x1) / Length
increment (y) = (y2 – y1) / Length
increment (z) = (z2 – z1) / Length
Begin Loop
i = 1
while (i ≤ Length)

store pixel(Round(x),Round(y),Round(z))
x = x + increment (x)
y = y + increment (y)
z = z + increment (z)
i = i +1

end while
End Loop

4- FPGA implementation of 3D-DDA

In this section a hardware implementation, using FPGA, of the 3D-DDA is presented.
A block diagram of the hardware designed unit is illustrated in figure (2). The scan

Al-Rafidain Engineering Vol.19 No.5 October 2011

33

conversion operation begins when the start signal is set "ON". The control unit part is
responsible for calculation of the difference in x, y, and z coordinates, in addition to that it
enables the line increment part. The scan conversion operation of a line segment requires its
two input vertices V1(X1,Y1,Z1) and V2(X2,Y2,Z2) with its intensities as inputs to the
hardware unit. The computed greatest coordinates absolute difference (dx or dy) is then,
using division operation, used to calculate the increment value of x, y, and z. After that the
intermediate pixels are calculated using addition operation, each time the increment value is
added to x , y, and z coordinates. Then the rounding operation is performed to produce
integer values. The address of the frame buffer is calculated for each pixel from its computed
coordinate values (Xc,Yc) to load the intensity data and z value at the right location in the
buffer.

Figure(2): 3D-DDA implemented unit

Line zs ys xs
Increment

X1Y1X2Y2 Z1Z2StartCLK Intensity

Comparator

dxdy

Multiplexer

DividerDividerDivider

dz

AdderAdderAdder

xincyinczinc

XcYcZc

Rounding Operation

Shifter Adder

Depth Buffer

Address

intensity

enable

xoyo

zo

|dx||dy|Zb

WE

Length

Ali: Depth Buffer DDA Based on FPGA

34

5- Test results

The 3D-DDA is implemented using VHDL and synthesized using FPGA available on the
kit-board Spartan-3E. Two testing examples are used for verification. Figure (3) shows the
simulation waveforms of example (1) executed by the implemented hardware where:

star: start signal.

x1, y1,z1 & x2, y2,z2: the two end vertices of the line segment.
res_subx , res_suby & res_subz : the coordinate differences dx, dy, and dz respectively,
where: dx = (x2-x1), dy = (y2-y1), and dz = (z2-z1).
leng: the greatest absolute coordinates difference dx or dy.
xinc: increment in x coordinate.
yinc: increment in y coordinate.
zinc: increment in z coordinate.
xs: the current x coordinate before rounding.
ys: the current y coordinate before rounding.
zs: the current z coordinate before rounding.
xo: the current x coordinate after rounding.
yo: the current y coordinate after rounding.
zo: the current z coordinate after rounding.

In figure(3) the inputs vertices for test example (1) are (01.00 h ,01.00 h ,00.00 h) and
(0f.00 h ,0a.00 h, 04.00 h) fixed point representation (8 bit for the integer and 8 bit for the
fraction). The scan conversion operation begins when the 'star' signal becomes "ON". The
control unit computes the coordinate difference values dx (0e.00), dy (09.00), and dz (04.00).
Then the greatest coordinate difference (absolute dx or dy) is determined to evaluate the
length of the line (leng =0e.00 h). After that, the increment in x ,y and z are calculated (
xinc=01.00 h which is equal to 1, yinc=00.a5 h which is equal to 0.644, and zinc=00.49 h
which is equal to 0.2851) by dividing dx, dy, and dz by the length. From these values the
increment in x, the increment in y, and the increment in z coordinates are used to determine
all pixels between the two vertices and at each pixel (xs, ys, zs) rounding operation is
performed. However, the simulation of the first step values in figure (3) are calculated
theoretically according to the 3D-DDA algorithm, for comparison, in the following steps:

dx = x2-x1 = 0f.00 – 01.00 = 0e.00 hex.
dy = y2-y1 = 0a.00 – 01.00 = 09.00 hex.
dz = z2-z1 = 04.00 – 00.00 = 04.00 hex.
Leng =0e.00 hex.
Xinc = dx/leng = 01.00 hex = 1.
Yinc = dy/leng = 00.a5 hex =0.644.
zinc = dz/leng = 00.49 hex = 0.2851.
xs = x1+ xinc = 01.00 + 01.00 = 02.00 hex.
Xo = rounding(02.00) = 2.
ys = y1+ yinc = 01.00 + 00.a5 = 01.a5 hex.
Yo = rounding(01.a5hex) = rounding(1.644) = 2.
zs = z1+ zinc= 00.00 + 00.49 = 00.49 hex.
Zo = rounding(00.49 hex) = rounding(0.2851) = 0.

Al-Rafidain Engineering Vol.19 No.5 October 2011

35

Figure(3): Simulation sample results of example 1

The incremental calculation of pixels continues till the last one which is the second end or
vertex of the straight line segment. To verify the performance of the designed unit, the pixels
are theoretically computed and listed in Table (1).

Ali: Depth Buffer DDA Based on FPGA

36

Table(1) Theoretically computed pixels for example 1

Rounded zzRounded yyx

00111

00.285721.64282

10.571422.28573

10.857132.92854

11.142843.57145

11.428544.21426

21.714254.85717

22.000065.50008

22.285766.14289

32.571476.785710

32.857177.428511

33.142888.071412

33.428598.714213

43.714299.357114

44.00001010.000015

In figure(4) the inputs vertices for test example (2) are (01.00 h ,0f.00 h ,00.00 h) and (05.00
h ,05.00 h, 05.00 h). The coordinate difference values dx is equal to 04.00h, dy is equal to
f6.00h (equivalent to -10), and dz is equal to 05.00h. So the length of the line is equal to
0a.00h (10 is the absolute value of dy). After that, the increment in x ,y and z are calculated
(xinc = 00.66 h which is equal to 0.398437 (approximately 0.4), yinc is ff.00 h which is
equal to -1, and zinc=00.80 h which is equal to 0.5) by dividing dx, dy, and dz by the length.
Other calculations are:
xs = x1+ xinc = 01.00 + 0.66 hex = 01.66 hex. = 1.398
Xo = rounding(1.398) = 1.0
ys = y1+ yinc = 0f.00 - 01.00 = 0E.00 hex. = 14.0

Yo = rounding(0E.00hex) = rounding(14) = 14.0
zs = z1+ zinc= 00.00 + 00.80 hex = 00.80 hex. = 0.5
Zo = rounding(00.80 hex) = rounding(0.50) = 1.0

Next values are
Xo = 01.66 hex + 0.66 hex = 02.32 hex. = 2.195
Xo = rounding(2.195) = 2.0
Yo = E hex -1.0 = D hex = 13.0
zs = 00.80 + 00.80 hex = 1.60 hex. = 1.375
Zo = rounding(1.60 hex) = rounding(1.375) = 1.0

Other values are incrementally computed in the same manner.

Al-Rafidain Engineering Vol.19 No.5 October 2011

37

Figure(4): Simulation sample results of example 2

6- Conclusions

A new algorithm as a three dimensional development of the available two dimensional
Digital Differential Analyzer is designed and implemented using the configurable Field
Programmable Gate Array (FPGA). This is accomplished by computing the depth value or z
and storing it in the frame or depth buffer, in addition to the intensity, for each pixel so that
the application of depth buffer method for removing the hidden surfaces becomes feasible.
The calculation if z is done incrementally rather than using the 3D line equation for each
pixel. By this way, the hardware is simpler and operates faster. The designed unit can accept
straight line segments with negative slope which produces negative dx or negative dy as
demonstrated by example 2. So the unit is capable of working with different slope angles and
locations. The representation of pixel values using two hexadecimal digits (or 8 bit) before
the decimal and two hexadecimal digits after (or 8 bit) has no effect on the accuracy. This is

Ali: Depth Buffer DDA Based on FPGA

38

because each pixel coordinate fraction value is rounded to the nearest integer value before
being stored in the frame buffer as illustrated by table (1). Table (2) shows the utilization
resources of Spartan3 Kit that is used to implement the unit. The hardware unit can produces
pixels at a speed of 120 M pixel per second assuming a very small time is lost in computing
the increment values (one cycle as shown in the waveforms), before the production of pixels,
which slightly reduces the maximum operating frequency in the table.

Table(2) Resources utilization for the 3D-DDA unit
for 128*128 pixel (2 bytes per pixel, one for intensity and one for Z)

RatioTotal
Resources

Utilized
Resources

Type Resources
(or Frequency)

14%4656662Number of Slices
11%93121049Number of Slices

Flip Flops
9%9312852Number of 4 input

LUTs
31%23273Number of

Bounded IOBs
80%2016Number of Block

RAMS
0%200Number of MULT18X18s

4%241Number of GCLKs

120.389 MHZ
Maximum Operating

Frequency

References

[1]: Roman P.Molla Vaya , “Parallel Fixed Point Digital Differential Analyzer “ , Computer
Journal , Vol. 23, No. 1, pp: 46-52, 1987.

[2]: Arie Kaufman ,” Efficient algorithms for 3D scan-conversion of parametric curves,
surfaces, and volumes” , International Conference on Computer Graphics and Interactive
Techniques , ,ISBN:0-89791-227-6, pp: 171 – 179, 1990.

[3]: Andreas Schilling , Wolfgang Straßer , “EXACT: Algorithm and Hardware Architecture
for an Improved A-Buffer”, Computer Graphics, vol. 27, no. 4, (SIGGRAPH ’93
Proceedings), pp: 85–92, August 1993.

[4]: Marc Olano, Trey Greer ,“Triangle Scan Conversion using 2D Homogeneous
Coordinates”, SIGGRAPH / EUROGRAPHICS Conference On Graphics Hardware
Proceedings of the ACM SIGGRAPH / EUROGRAPHICS workshop on Graphics hardware,
ISBN:0-89791-961-0, Pages: 89 – 95, 1997.

Al-Rafidain Engineering Vol.19 No.5 October 2011

39

[5]: Hans Holten-Lund, “Design for Scalability in 3D Computer Graphics Architectures”,
Ph.D. thesis Computer Science and Technology Informatics and Mathematical Modelling
Technical University of Denmark, July, 2001.

[6]: Khun Yee Fung, Tina M. Nicholl A. K. Dewdney,” A Run-Length Slice Line Drawing
Algorithm without Division Operations”, Computer Graphics Forum Volume 11 Issue 3, pp:
267 – 277, Feb 2003.

[7]: David Harris, “An Exponentiation Unit for an OpenGL Lighting Engine”, Member, IEEE
, IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 3, pp: 251-256, March 2004.

[8]: Sven Woop, Jörg Schmittler, and Philipp Slusallek,” RPU: A Programmable Ray
Processing Unit for Real Time Ray Tracing”, SIGGRAPH In Proceedings of the ACM
SIGGRAPH /EUROGRAPHICS Conf. on Graphics Hardware, pp:27–36, 2005.

[9]: Dusheng Wang , Hock Lye Toh , Xiang Chen , Fan Yang ," A Simple Anti-Aliased
Method For Straight Line Drawing Based On DSP Platform ", Posters proceedings ISBN 80-
86943-04-6 , WSCG' 2006 , January 30 – February 3, 2006.

[10]- David Blythe, Scott R. Nelson," Lighting and Shading Techniques for Interactive
Applications ", SIGGRAPH 99, Course 12, Art. 5,pp: 37, August 8, 1999.

[11]- Sherif Ghalib Max Planck, Institute for Computer Science, Saarbrucken, Germany,
"Object Space Visibility", SIGGRAPH, course # 6, 2006.

[12]- James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, and Richard L.
Phillips, " Introduction to Computer Graphics ", Addison _ Wesley, 13th printing, pp 451,
July 2000.

[13]- Mark Segal , Kurt Akeley, " The OpenGL Graphics System : specification ",
Silicon Graphics Inc., 2002.

The work was carried out at the college of Engineering. University of Mosul

