Studying the Corrosion of Graphite Containing pearlitic Cast Irons in Sandy Soil

Sobhi I. Ibrahim Abdulhaqq A. Hamid Sabhan H. AL-Rifay
Assistant Professor Lecturer M.Sc. Student
Mechanical Dept.-College of Engineering-Mosul University

Abstract

Wide range of industrial and engineering applications for graphite containing cast irons and the harmful effects of corrosion environments on these important engineering materials, make it necessary for continuous Scientific research in this field . In the current study, performed corrosion tests on Pearlitic cast irons using the sandy soil as the corrosion environment .

The results obtained show a clear relationship between corrosion rate of graphite containing cast iron with shape of graphite. The graphite flakes in cast iron appeared to cause high corrosion rates compared with spheroidal or rosette graphites . The results also show that corrosion rates of spheroidal cast iron are slightly higher than malleable cast iron. The corrosion rates of grey cast iron represent the highest when compared with those of spheroidal and malleable cast iron.

Keywords: Corrosion, Cast Iron, Sandy Soil

کلمات الدالة: التنازل، حديد الصب، التربة الرملية.

Dr. Studies the Corrosion of Graphite Containing pearlitic Cast Irons in Sandy Soil

Sobhi I. Ibrahim Abdulhaqq A. Hamid Sabhan H. AL-Rifay
Assistant Professor Lecturer M.Sc. Student
Mechanical Dept.-College of Engineering-Mosul University

Abstract

Wide range of industrial and engineering applications for graphite containing cast irons and the harmful effects of corrosion environments on these important engineering materials, make it necessary for continuous Scientific research in this field . In the current study, performed corrosion tests on Pearlitic cast irons using the sandy soil as the corrosion environment .

The results obtained show a clear relationship between corrosion rate of graphite containing cast iron with shape of graphite. The graphite flakes in cast iron appeared to cause high corrosion rates compared with spheroidal or rosette graphites . The results also show that corrosion rates of spheroidal cast iron are slightly higher than malleable cast iron. The corrosion rates of grey cast iron represent the highest when compared with those of spheroidal and malleable cast iron.

Keywords: Corrosion, Cast Iron, Sandy Soil

ốFacebook
©2020 All Rights Reserved

أتم تم في 20/1/2009

13
PEARLITIC GREY CAST IRON
PEARLITIC MALLEABLE CAST IRON
ACIDIC
NEUTRAL
FLAKES
FERRITE + CEMENTITE
دراسة تأثير هيدرنازج حديد الصب الزهري الكارفيت خِلال السنوات الماضية، قد تعود سبب ذلك إلى كون حديد الصب الزهري الكارفيت ي蓼ي إلى حد كبير ظروف الاستعمال في التطبيقات الهندسية، ولِلإلتزام بتفاعليات هذا النوع، مما ينعدقط في هذه الدراسة وتحديد استعمالاتها، والذي يؤكد مدى أهمية هذه الدراسة وضرورة تحديد ودعم البحوث في هذا المجال للعثور على طبيعة التأثير لهذه الأنواع، للمساعدة في إيجاد الطرق المناسبة للحد من التأثير والتأليل من أضراره.

الجزاء العملي: يتضمن هذا الجزء المواد التي استخدمت في هذه الدراسة والتقنيات العملية والخبرية فيما يلي:

(1) المواد (Materials): تم اختيار واستخدام ثلاثة أنواع من حديد الصب الكارفيتي لليبلايتي تختلف في نوع وشكل الكارفيت، كما أن تركيب القاعدة (Matrix) لها هو من البيرلايتي، وهذه الأنواع هي:

(1) حديد الصب الرمادي البيرلايتي (Pearlitic Grey C.I.)
(2) حديد الصب الكرة البيرلايتي (Pearlitic Spheroidal C.I.)
(3) حديد الصب الزهري البيرلايتي (Pearlitic Malleable C.I.)

والجدول (1): يوضح التركيب الكيميائي (Chemical Composition) للأنواع المستخدمة في هذا البحث.

<table>
<thead>
<tr>
<th>Chemical Composition (Weight %)</th>
<th>Types of cast iron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearlitic Gray C.I.</td>
</tr>
<tr>
<td></td>
<td>Pearlitic Spheroidal C.I.</td>
</tr>
<tr>
<td></td>
<td>Pearlitic Malleable C.I.</td>
</tr>
<tr>
<td>C</td>
<td>~ 4.65</td>
</tr>
<tr>
<td>Si</td>
<td>2.35</td>
</tr>
<tr>
<td>Mn</td>
<td>0.630</td>
</tr>
<tr>
<td>P</td>
<td>0.0440</td>
</tr>
<tr>
<td>S</td>
<td>~0.248</td>
</tr>
<tr>
<td>Cr</td>
<td>0.109</td>
</tr>
<tr>
<td>Ni</td>
<td>0.0380</td>
</tr>
<tr>
<td>Mo</td>
<td>0.00460</td>
</tr>
<tr>
<td>Al</td>
<td>0.00530</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0920</td>
</tr>
<tr>
<td>Fe</td>
<td>Balance</td>
</tr>
</tbody>
</table>

(Experimental Techniques): (1) التقنيات العملية

1. التحليل المجهرى: في بداية هذه الدراسة تم تحضير نماذج عديدة من حديد الصب الشبلكي لل栲ب المحجيري لغرض تحديد البنية اللاحقة المطلوبة لتوفر حدود الصب الكارفيتي في هذه الدراسة. وقد تم تحضير النماذج لل栲ب المحجيري باستخدام ورق التمزج بدرجات (Grinding) لتحويل النماذج لكي يتم تقسيمها (Final Polishing) باستخدام مادة تالفة (1200,1000,500,220) (Metallographic) المنضدية، وكتابة المادة المستخدمة في التمزج هي الألومنيوم، ثم عملية الإظهار (Rotary Polishing).

2. استخدام مخبر النبات (4 % Nital) (4) باستخدام مختبر النبات لมหาوية الصوب اللاحقة لتوفر حدود الصب الكارفيتي التي تم اختبارها في هذه الدراسة، والمنصوبة في الأشكال (1، 2، 3) والتي تم التقاطها بواسطة المجهر ذي الكاميرة بالاستعانة بال OMAP}

15
الشكل (1): البنية المجهرية لتحديد الصب الرمادي البيضاوي

الشكل (2): البنية المجهرية لتحديد الصب الكروي الكرايفي البيضاوي

الشكل (3): البنية المجهرية لتحديد الصب الزهري الكرايفي البيضاوي

الشكل (4): عينات من حديد الصب الكرايفي قبل إجراء الاختبار

الشكل (5): عينات من حديد الصب الكرايفي المتاحة في التربة الرملية
تهيئة نماذج الاختبار

تم تحضير عدد من نماذج لكل نوع من أنواع الجديد الصب الكربوني، والتي وُضِعت على مساحات متساوية داخل وسط النماذج، بحيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، حيث تم وضع نموذج لكل نوع حسب نمط زمني، وذلك لحساب النماذج في الوسيلة الكاربونية والتمثيل البديلة الزمنية، WHERE 3 = 3.

الخطوة الثانية: حذف دورة على عدد المراحل، هي:

1. إعداد النماذج في الوسيلة الكاربونية
2. تطوير وتجهيز النماذج في الوسيلة الكاربونية
3. إعداد النماذج في الوسيلة الكاربونية
4. إعداد النماذج في الوسيلة الكاربونية
5. إعداد النماذج في الوسيلة الكاربونية

(Weight Loss Measurements)

تم تقسيم النماذج على حسب الاتجاه، في:

1. فترات الاختبار: داد اختبار النماذج في وسط النماذج، في يوم 1 /2008، وقد تم تقسيم فترات الاختبار إلى خمس فترات زمنية طبقًا لعدد النماذج التي تم تحضيرها وهي:

 (1) الفترة الأولى: شهر (شباط + آذان)
 (2) الفترة الثانية: شهر (شباط + آذان + نيسان)
 (3) الفترة الثالثة: ثلاثة أشهر (شباط + آذان + نيسان + أيار)
 (4) الفترة الرابعة: أربعة أشهر (شباط + آذان + نيسان + أيار + حزيران)
 (5) الفترة الخامسة: خمسة أشهر (شباط + آذان + نيسان + أيار + حزيران)

(Grinding)

تُستخدم عملياً بدلاً من أخذها من جداول إعداد على مبدأ قاعدة أربعي مساحته وسكة المواصلات (88-6373), وتم ذلك باستخدام دورة النماذج وفقًا للوسائل المختلفة والمعروفة بالماء المقطوع، وتسهل استخدام المعايير (1). يتم حساب الكالسيوم لكل نوع (10), كما أن النماذج تستخدم في مقياس حساب الكالسيوم كل نوع في الجدول (2).

\[
D = \left[M_d / M_w \right] D_w
\]

(1) التجدیدة المحسوبه (المطلوبة) (g/cm³) = D

(2) التجدیدة المحسوبه (الملزم) (g/cm³) = D_w

(3) الوزن النموذج في اليواء (M_w)

(4) الوزن النموذج في اليواء (M_d)

الدورة الدراسية: دراسة نماذج حداثة الصب الكربوني في التربة الرملية

(5) تغذية النماذج في التربة الرملية

17
Table 2: Corrosion Rate

<table>
<thead>
<tr>
<th>Types of cast iron</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearlitic Gray C.I.</td>
<td>7.1133</td>
</tr>
<tr>
<td>Pearlitic Spheroidal C.I.</td>
<td>7.1556</td>
</tr>
<tr>
<td>Pearlitic Malleable C.I.</td>
<td>7.1266</td>
</tr>
</tbody>
</table>

The corrosion rate (Corrosion Rate) and the corrosion rate constant (C) are calculated using the following formula:

\[
\frac{534W}{DAT} = \text{Corrosion rate (mpy)}
\]

Where:
- \(W \) = Corrosion rate (mpy)
- \(D \) = Weight of the specimen (mg)
- \(A \) = Cross-sectional area (in²)
- \(T \) = Time of exposure (hours)
- \(AT \) = Time in months

The corrosion rate constant (C) is calculated using the following formula:

\[
C = \frac{W}{AT}
\]

Table 3: Soil Quality Parameters

<table>
<thead>
<tr>
<th>Soil Quality Parameters</th>
<th>As Prepared</th>
<th>After 5 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_c) (μS/cm)</td>
<td>200</td>
<td>98</td>
</tr>
<tr>
<td>PH</td>
<td>8.44</td>
<td>8.72</td>
</tr>
<tr>
<td>Total Hardness mg/L</td>
<td>800</td>
<td>815</td>
</tr>
<tr>
<td>Calcium Hardness mg/L</td>
<td>720</td>
<td>740</td>
</tr>
<tr>
<td>Calcium (Ca²⁺) mg/L</td>
<td>288.6</td>
<td>242</td>
</tr>
<tr>
<td>Magnesium (Mg²⁺) mg/L</td>
<td>17.92</td>
<td>16.8</td>
</tr>
<tr>
<td>Chlorides (Cl⁻) mg/L</td>
<td>43.98</td>
<td>25.7</td>
</tr>
<tr>
<td>Sulphates (SO₄²⁻) mg/L</td>
<td>215.22</td>
<td>432.6</td>
</tr>
<tr>
<td>(\text{HCO}_3^-)</td>
<td>205.3</td>
<td>211</td>
</tr>
<tr>
<td>Resistivity (Ω.cm)</td>
<td>5000</td>
<td>10204</td>
</tr>
</tbody>
</table>
الجدول (4): تحليل مكونات التربة المستخدمة كوست للنفاك

<table>
<thead>
<tr>
<th>Contents analysis</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>نفاذية حبيبات الطين</td>
<td>85</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

الجدول (5): نسبة المحتوى المائي ودرجة الحرارة

<table>
<thead>
<tr>
<th>شهر</th>
<th>شمط</th>
<th>شتاء</th>
<th>الربيع</th>
<th>الصيف</th>
</tr>
</thead>
<tbody>
<tr>
<td>المتوسط المائي (mm)</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>معدل درجة الحرارة (°C)</td>
<td>19</td>
<td>24</td>
<td>19</td>
<td>13</td>
</tr>
</tbody>
</table>

النتائج والمناقشة

ا- شكل ووضوع الكرياتي وتأثيره على حديد الصب الكرياتي

من أجل دراسة تأثير نوع وشكل الكرياتي في مقاسات التأكل في حديد الصب الكرياتي، تم اختيار أنواع من حديد الصب الكرياتي، يكون فيها الكرياتي إما على شكل شرائح (Flakes) ، كما في حديد الصب الرمادي ، أو يكون على شكل كرات (Spherical) ، كما في حديد صب الكرياتي النانسي . أجريت على هذه الأنواع سلسلة من اختبارات التأكل لقياس فترة تعرض للنفاك، ويمكن ملاحظة النتائج التي تم التوصل إليها بعد انتهاء فترة الاختبار في الأشكال (6). (7) . (8) . (9) . (10)

ب- تأثير الدرجة الحرارية في السلطان حديد الصب الكرياتي

توضح النتائج (6) مقاومة حديد الصب الكرياتي الباليزي وحديد الصب الكرياتي من نوع سبأ حديد الصب الكرياتي في درجة الحرارة المتغيرة للنفاك. ويدعو أن سبب ارتفاع معدلات تأكل حديد الصب الرمادي بالوعي وأنواع عشوائية نتيجة ارتباط وداخل شرائح الكرياتي في حديد الصب الرمادي، والتي تشكل سيئة من شروط الكرياتي التي تسهم بتقليل ومست였 التأكل، أما في حالة حديد الصب الكرياتي النانسي فكانت الكرياتي في حالة سيئة من شروط الكرياتي التي تسهم بتقليل ومستeward الكرياتي．

ويوقظ أيضاً كيف يمكن أن يكون حديد الصب الكرياتي النانسي مفيدة أو أعلى نسبة من معدلات التأكل لحديد الصب الكرياتي الباليزي. وربما يعد سبب ذلك إلى وجود تشابه نوع ما في نمط الكرياتي، وهذا قد يجعل معدلات التأكل حينها مفيدة.

ب- تأثير التربة المائية في حديد الصب الكرياتي

توضح النتائج (6) تأثير معدلات التأكل في حديد الصب الكرياتي الباليزي عند استخدام التربة المائية، ويعتبر للنفاك، وذلك لدراسة بدأ في عام (2009) (Sabhan), التي أجريت دراسة تأكل حديد الصب الكرياتي في الأوساط المائية والحيوية والربيعية، التي يعند السبب في ارتفاع معدلات التأكل حديد الصب الكرياتي في التربة المائية، والتي تكون من: (10% طين)، (70% طين)، (60% غري). (85% طين)، و (10% غري). (30% طين)، (50% غري). (30% طين)، (50% غري). (60% غري). (70% غري). (85% غري). (90% غري). (95% غري). (100% غري).

يوجد الأكسجين كنهايتي على نسبة عالية من حبيبات الرمل التي تسهم بالهوية، وبالتالي تساهم على نسبة محدودة نسبة من الطين، والتي تساعد على الاحتراق بالباء، ومساعدات مادة غري الغري التي تعمل على تشكيل الرمل والطين، أي الانطلاق بالأكسجين (البيوة) والمواد التي يمكن أن تكون تأثير الوسط في كل حديد الصب الكرياتي كهذا يسمح لتوفر العوامل الحفاظ للنفاك، وهي الماء والأكسجين، والجدول (5) بين نسبة المحتوى المائي لهذه التربة، فضلاً عن
العوامل الأخرى التي لها تأثير مباشر في تأكل الأجزاء متشابهة تأثير الكربونات، وعدد المقاومة النوعية، والجدول (3) يوضح التحليل الكيميائي والفيزيائي للترسب المستخدمة. ومن خلال هذا الجدول تضح بأن قيمة المقاومة النوعية للترسبة في بداية الاختبار كانت تساوي (5000 أوم. سم)، ونجد أن هذه الترسب تعتبر من الأنواع التي تسبب تأكلًا شديديًا للمعدن، وكذلك حسب المواصفات الفيزيائية الأمريكية (11). تشير النتائج في الأشكال المذكورة إلى أن معدلات التآكل لأنواع حديد الصب الكربوني المستخدمة والمترسبة للترسب في الترسب تقل تدريجيًا مع زيادة زمن التعرض للتآكل. ويعود سبب ذلك إلى نقصان المحتوى المائي للتربة خصوصًا مع زيادة درجات الحرارة في قفترات الاختبار التي شملت شهر شباط وأذار ونيسان وأيار وحزيران، والجدول (5) يؤكد أن نقصان كمية المحتوى المائي في أثناء تلك الفترات. فقد أشار الباحث (1979) [13] إلى تأثير المحتوى المائي في شدة التآكل للترسبة، وذكر أن نقصان المحتوى المائي للترسبة يؤدي إلى نقصان في معدلات التآكل. حيث أن كل المحتوى المائي للترسبة أدى إلى زيادة المقاومة النوعية لها، وبالتالي، إلى نقصان التوصيلية الكهربائية كما تؤدي إلى نقصان في التفاعل الكهرومغناطيسي الكهربائي، وإلى الخفض في معدلات التآكل. أو ربما قد يعود سبب نقصان معدلات التآكل إلى أونات الكرويدي التي كانت قيمتها في بداية الاختبار عالية ولكن قيمتها انخفضت في نهاية الاختبار، كما هو واضح في الجدول (3). إذ أن أونات الكرويديات هذه تعمل على تقليل المقاومة النوعية للترسبة من خلال زيادة التوصيل الكهربائي فيها ليكون الوسط بذلك أقل تأثيرًا في أنواع حديد الصب الكربوني المستخدمة كما تقلل مقاومتها التآكل من خلال افتراض التفاعلات الكهرومغناطيسية على السطح الالتحالي المكونة. هذا ينطبق مع التحليل الكيميائي للفيزيائي للترسبة في بداية الاختبار ونهايته في الجدول (3). الذي أشار إلى نقصان التوصيلية الكهربائية والزيادة المقاومة النوعية في نهاية الاختبار.

الشكل (6): معدلات تآكل حديد الصب الرمادي لبرلياني

الشكل (7): معدلات تآكل حديد الصب الكروي لبرلياني الألباني لبرلياني لبرلياني
الشكل (8): معدلات تآكل حديد الصب الزهري الكرافيتي البيرليأتي

الشكل (9): المقارنة بين معدلات التآكل لأنواع حديد الصب الكرافيتي البيرليأتي في التربة الرملية
الاستنتاجات

1- يبين أن الكرافيت شكلاً وواقعاً له تأثير واضح في معدلات التآكل من خلال التأثير في البنية المجهريّة لحديد الصب الكрафيتي. إذ يُبين أنه عندما يكون شكل الكرافيت على هيئة شرائح فإن معدلات التآكل هي الأعلى، في حين عندما يكون شكل الكرافيت كرويًا فإن معدلات التآكل هي أعلى نسبياً مقارنة بالشكل الزهري للكرافيت.

2- إن أفضل حديد كرافيتي مقاوم للتآكل في التربة الرملية هو حديد الصب الزهري الكرافيتي ذو التركيب البيلوريتي، والأسوا للتآكل هو حديد الصب الرمادي البيلوريتي.

3- انخفضت في معدلات التآكل لأثناء الثلاثة لحديد الصب الكرافيتي بزيادة فترة تعرضها للتآكل ودرجات متباينة بين الأثناء الثلاثة تحت نفس ظروف التآكل.

المصادر