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Abstract 

 

There are mainly two kinds of network processor: coprocessors-centric model, 

and core-centric model. In the coprocessors-centric, the data-plane is handled by 

coprocessors. The core processes most of the data-plane packets yet offloading some 

tasks to coprocessors in the core-centric model. The IXP is one of Intel network 

processor series which is a core-centric model. They are optimized for home, small-to-

medium enterprise, and networked embedded applications. This work aims to design a 

module of IXP425 performing VPN. The processing time for each stage is available in 

the datasheet of the IXP425. The Markov chain and Omnet++ has been adopted in this 

work to explore the system parameters and bottlenecks focusing on the buffer length 

and how to be optimized for each stage. Single process programming is considered in 

the IXP425 operation.  
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 IXP425 اثانشبك وتحهُم اداء معانجومزجت 

 عمش فخشٌ أحمذ                              حامذ عهٍ انذَهفخش 

 انعشاق –لسم هىذست انحاسباث فٍ جامعت انمىصم 

 

 انخلاصت

 ىصب حىل كُفُت انمعانجت عهً مستىيمه معانجاث انشبكاث الاختلاف انجىهشٌ بُىهما َ سئُسُانن انك وىعاهى   

معانج شبكاث  عهً كض هزا انبحثَش حُث اما َتم رنك مه لبم انمعانج انمشكضٌ او مه لبم انمعانجاث انمساعذة. انبُاواث

اوتجته ششكت اوتم حُث تم ومزجت هزا انمعانج واعتماد الاصمىت انمتىفشة فٍ انمىاصفاث انفىُت نه لاجشاء محاكاث نمُاط 

أداء  أفضم إنًوصىلا   نكم مشحهت الأفضمكُض عهً دوائش انعضل وانجم شمع انت وتأشُش الاختىاق أو عىك انضجاجت ادائه

.  ++Omnetو    Markov chain تبىٍ  عىذ

 

 

 
 

Received: 11 – 4 - 2010                                                    Accepted: 26 – 6 - 2011 

 

mailto:fhali310@yahoo.com


Al-Rafidain Engineering                        Vol.20                      No. 2                   March   2012  

 

117 

 

1.  Introduction 

 
Security and content-aware processing are part of the features supported by network 

applications which demand much more powerful hardware platforms to achieve them.  VPN 

(virtual private network) needs intensive computational process where general-purpose 

processors are often adopted to achieve it. However, the cost is considerable while the 

throughput is not satisfactory because of the heavy cryptographic operations [1]. On the other 

hand, the application specific integrated circuits (ASICs) can support the performance 

requirement with a circuitry designed for both networking and cryptographic processing, yet 

it does not have the ability of reconfiguration which makes it less appealing. 

 

Network processors have been considered as an alternative solution to deal with the 

above-mentioned problems for their core-processor/coprocessors based architecture on which 

control and data-plane processing are separated for efficiency and re-programmability for 

functional adaptations. In the core network processor, the complicated operations and control 

messages are the core processor responsibility, while a number of multithreaded 

coprocessors, having specifically designed instructions for networking purposes (ASIC), are 

employed for mass data plane processing. This architecture called coprocessors-centric; is 

frequently applied as a core device, which requires simple configurability, but high scalability 

[2, 3, 4, 5]. Both control and data-plane packets are processed by the core processor in the 

implementation of an edge device which deals with relatively mild traffic volume. This 

model is also called the core-centric model. However, tasks need computational intensive 

works like receiving, transmission, and en-/de-cryption are offloaded to certain application-

specific coprocessors [4]. 

 

          Applications like DiffServ (Differentiated Services), VPN cryptographic algorithms, 

and intrusion detection and prevention (IDP) are studied by several researchers who 

discovered the feasibility of adopting the core-centric models in packet processing for the 

above network applications. Beside the evaluation through implementing both models to find 

out system bottlenecks, mathematical modeling is favored for the coprocessors centric model 

in order to unveil design implications that are unlikely to be observed through real 

benchmarking [3, 6, 7]. In this work, an aim to model IXP425 (Intel network processor) 

which is core-centric when it is performing VPN. The XScale core processor of IXP425 has 

the packet processing responsibility, yet the coprocessors execute receiving, transmission, 

and cryptographic operations [8]. 

 

2.  Hardware architecture of IXP425 

 
The IXP425 network processor is a highly integrated, versatile single-chip processor 

which can be used in a variety of products requiring network connectivity and high 

performance. It has a 533MHz XScale core processor which suites handling system 

initialization and software objects execution.  Also, it has three 133MHz programmable 

coprocessors called network processor engines (NPEs) used to execute, in parallel, the code 

image stored in an internal memory. Each NPE has an ALU, self-contained internal data 

memory and an extensive list of I/O interfaces, together with hardware acceleration elements 

that target a set of networking applications providing functions like MAC filtering, CRC 

checking/generation, AAL2, AES, DES, SHA-1 and MD5. 
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Figure (1) Intel IXP425 network  processor block diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) IXP425 network  processor block diagram 

 

        In addition to NPEs, IXP425 has application-specific coprocessor which  is used for 

encryption/decryption operation. The core, coprocessors, and other components are 

connected by three buses interconnected by two bridges as in figure (1) [9, 10, 6]. The 

IPX425 supports hardware multithreading with a single cycle context switch and that helps 

NPEs to reduce memory accesses time with an ideal state number. The XScale core and 

coprocessors communicate through hardware queue manager using interrupt and message 

queue mechanisms. The queue manager contains 8KB SRAM divided into 64 independent 

queues manipulated as circular buffers for allocating free memory space to incoming packets 

and for locating packets in the memory. The SDRAM can be expanded up to 256MB for 

storing tables, policies and OS applications in addition to packets [8].   

 

3.  Detailed packet flow in IXP425 

 
When a packet arrives at the interface of an NPE, it is divided into a number of 

partitions of size 32 byte and stored at the Receive FIFO of an Ethernet coprocessor which in 

turn performs MAC-related operations. The queue manager of the NPE allocates those parts 

in corresponding addresses in SDRAM then interrupts the XScale of the reception for further 

processing. When the IXP425 executes procedures like IP and other higher layer protocol 

stacks, there is a possibility that authentic and cryptographic operations are needed to 

complete such procedures. The core can execute those functions or offloading the 

computation overhead to appropriate coprocessors (NPE). 

 

4.  VPN overview 

 
Virtual Private Network (VPN) is used to get secure transmission over un-trusted 

networks. In the normal VPN, the IPSec protocol is adopted as the underlying technique 

because of the popularity of the Internet Protocol. VPN supports data authentication, integrity 
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Figure (2) The five VPN stages 

and confidentiality, in which two gateways 

are employed as endpoints constructing a 

VPN tunnel for secure data transmission. 

Improving the performance of the gateways 

is decisive to the VPN throughput [11]. 

VPN process can be divided into five main 

stages (tasks). Three of them can be done by 

the coprocessors, yet the rest are executed 

by the core itself. The VPN five stages are 

(1) receiving, (2) IPSec pre-processing, (3) 

en-/decryption, (4) IP processing, and, 

finally, (5) transmission. Figure (2) 

illustrates those tasks and which part 

executes each of them. 

 

The tasks 1, 3 and 5, are offloaded to corresponding coprocessors, namely, the 

receiving coprocessor, computational coprocessor, and transmission coprocessor, 

respectively, whereas tasks 2 and 4 are handled by the core through multiprogramming and 

context switching. 

 

4.1   Architectural assumptions 

 
From figure (3) it can be 

understood that the core has the 

responsibility of both IPSec pre-

processing and IP Processing; 

therefore, the core must have a 

mechanism to handle those tasks 

in parallel. Despite of the fact 

that many network processors 

can run hardware multithreading 

to reduce memory access latency 

through changing the running 

process with another when 

memory access is needed. In general, hardware multithreading requires duplicating buffers 

and registers, and that means increase in fabrication cost. This technique is efficient only 

when memory-access intensive applications, such as DiffServ and IDP are executed. Thus, a 

single thread is considered in each coprocessor because VPN is the application modeled in 

this work. Buffer space for each processing stage is also encompassed, except for the BW 
(Busy-Waiting) scheme, which needs no buffer between the core and the computational 

coprocessor. 

 

4.1.1 The busy-waiting scheme 

 
       Busy-Waiting (BW) is the first way to model the VPN. BW does not need any buffer 

between the core and computational coprocessor. That means, the core must wait until the 

computational coprocessor complete its work before resuming execution. In other words, 

after finishing IPSec preprocessing by the core, the result is passed (offloaded) to the 

computational coprocessor for en-/decryption. At the end of en-/decryption phase, the core 

 

 

 

 

 

 

 

 

Figure (3) Processing flow and task allocation of the 

VPN application over IXP425 (logical view) 
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receives the result for IP processing. From the above description, the core and the 

computational coprocessor can be seen as different processes in a logical CORE processor, 

since only one of them can be active at any time. The BW scheme can be described as a 

series of queues consisting of three servicing stations, as shown in figure (4) [11]. 

 

 
                          Figure (4) Modeling BW using queue 

 

 Each queue in the BW is M/M/1/∞ type, and the interval rate of each one is equal to 

the departure rate of the previous one except the Rec queue where its rate is equal to the input 

rate. The CORE utilization can be calculated using the following equation: 

                               

 

-------------------------------------- (1) 

 

 

 
Where μR denotes the mean arrival rate at the Core which is the same with the mean 

departure rate from the receiving coprocessor. TCoreA, Tcop and TCoreB represent the 

processing time for IPSec preprocessing, en-/decryption and IP processing, respectively. 

Finally, we can obtain the utilizations for core and computational coprocessor as: 

                                        

      ----------------------------------- (2) 

 

                       ----------------------------------- (3)  

                      
This is because CORE contains both the core processor and computational 

coprocessor. 

 

4.1.2  The interrupt-driven scheme 

 
 The second way to module VPN is the Interrupt-Driven (ID). The core does 

not need to wait the computational coprocessor to complete its current task. Instead the core 

passes the results from IPSec preprocessing to the computational coprocessor and resumes 

without being blocked. That means the core has to run IPSec preprocessing and IP processing 

in parallel; therefore, a buffer is required between the core and coprocessor. In other words, 

after the completion of IPSec preprocessing, the packet is passed to the coprocessor’s buffer, 

the core switches, with a switching delay TD, to the other process for performing IP-related 

operations so that the core is not stalled. The switching does not happen after only finishing 
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IPSec preprocessing but after a certain period of process run length. According to the above 

descriptions, the ID can be described using Markov chain, where the system performance is 

divided into six states, five of them are R, A, C, B and T for the five processing stages 

(Receiving, IPSec preprocessing referred to as CoreA, en-/de-cryption referred to as Cop, IP 

processing referred to as Core B, and Transmission) while the sixth S denotes the process 

switching. As shown in figure (5), S = 0/S = 1 means the core is processing packets at Core 

A/Core B; it then switches to an intermediate state S = 2/S = 3 after a run length of TS0/TS1, 

and waits for TD to finish the context switch. Using multi-process mechanism does not mean 

that the core will be in an execution state all the time and there is no wait state. The core will 

be in the wait state for the following situations:  

 

1- Packet arrivals from its predecessor. 

2- Available buffer slots in its successor to which the processing result is passed. 

 
From the above descriptions, the effective core utilization can be derived by 

subtracting the busy-waiting overhead from overall core utilization. However, to achieve this 

in the simulation, the following steps must be considered. 

 

(1) Setting appropriate run lengths TS0 and TS1 so that the processing resource is reasonably 

distributed. 

(2) Characterizing appropriate transition conditions so as to ensure that context switches are 

performed upon those conditions [11]. 

                 

 

 
* Λ The mean of the packet arrival rate. 

*     The mean run length of the packet at Core A. 

*     The mean run length of the packet at Core B. 

*     The mean switching  rate of core from 0 to 1. λs0 = 1/TS0. 

*     The mean switching rate of core from 1 to 0. λs1 = 1/TS1. 

*    The mean context switch delay. 

*    1/TD 

*    The mean service rate of processing stage X . 

*       The buffer size of processing stage X . 

 

Figure (5) The interrupt driven model  
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All possible transitions necessary to perform packet processing are listed in Table I 

and explained as follows: The core switches form 0/1 means CoreA/CoreB or reverse if the 

following conditions are met: 

 

(1) The run length time has been reached (TS0 for CoreA and TS1 for CoreB). 

(2) The corresponding active stage (either CoreA or CoreB in which the PCS resides) does 

not have any packet but the other does. 

 

At the same time switching will not occur for the following conditions:  

 

(1) The target stage to which PCS is going to switch has no packets. 

(2) The successor of the target stage has no buffer left.  

Whenever the switching happens from 0 to 1 or from 1 to 0 the delay TD must be added. 

 

Table I State transitions in the ID scheme [10] 

Component Transition Type Condition(s) Rate 

Receiving Arrival R < bufR λ 

 Departure  A < bufA  μR 

Core A  Arrival  follower of Rec  n/a 

 Departure  PCS=0, C < bufC  μA 

Cop  Arrival  follower of Core A  n/a 

 Departure  B < bufB  μC 

Core B  Arrival  follower of Cop  n/a 

 Departure  PCS = 1, T < bufT  μB 

Transmission  Arrival  follower of Core B  n/a 

 Departure  n/a  μT 

PCS 

0 => 2 

A > 0, B > 0  λS1 

(A = 0, B > 0) or C =bufC  ∞ 

(B=0) or T =bufT  0 

2 => 1  n/a  λD 

1 => 3 

A>0, B>0  λS2 

(A >0, B = 0) or T =bufT  ∞ 

(A=0) or C =bufC  0 

3 => 0  n/a  λD 

 

Where: 
               : The mean of the Packet Arrival rate.            

            µX: The mean service rate of processing stage X. 

        bufX : The Buffer size of processing stage X.        

          PCS: Packet Context Switch. 

           X : The mean Arrival rate of processing stage X. 

 

Figure (6) illustrates a state example whose buffer size equals to 3 for each stage and 

the corresponding transitions in which are five transiting into the state and others are 

transiting out from the state. While the inbound and outbound transitions are comprehensible, 

special note needs to be considered for the PCS, namely the PCS in the example state never 

transits from 0 to 1. This is because the Core B cannot pass the processed packet to the 

transmission stage, which is already full. The transition of PCS from 0 to 1 simply 
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contributes to the unnecessary overhead and, therefore, is considered an invalid transition 

[11]. 

  

 

 

 

 

 

 

 

 

 

 

 
Figure (6) State transitions example of the interrupt-driven model 

 

4.2    BW experiment using Omnet++ 

 
As mentioned in the previous section, the BW modeling can be described as one block. 

This block represents CorA, Cop, And CorB. That means the Cor is not only doing the core 

works (IPSec preprocessing and IP Processing) but also the coprocessor work (en/de-

cryption). For this project, the exponential distribution is considered for generating the 

packets in the gen block to compare our result with the work in [11]. A variety of values used 

as a mean value of this function so the system can be tested under different load values and 

also different run time durations. The queues used are of type M/M/1/100. That means the 

maximum number of the packets which can be stored in it is 100 otherwise the packet will be 

discarded by the queue due to unavailability of spacing. Both the Receiver and Transmitter 

blocks work as delayer with values taken from the IXP425 datasheets. Whenever any of them 

finishes its job the completed packet is sent to the next fifo and a request signal is sent to the 

previous buffer. Thus, the previous fifo will send the oldest packet in its queue. The sink 

block is used for statistic operations. Thus, it collects the packet out from the transmitter 

block and calculates the time. When the Cor is in the idle state, for example the NP just work, 

the Cor sends a request signal to previous fifo asking for a packet. When a new packet 

arrives, it passes three processing stages (IPSec preprocessing, en/de-cryption and IP 

Processing). This can be represented as three delay blocks. The delay time for those blocks is 

also taken from the IXP425 datasheets. During the processing time of this packet, the Cor 

will be in the busy state and it can process any other packet. Figure (7) illustrates the BW 

scheme.  

 

             -------------------------------------- (4) 

 

 

Where the total working time of the Core block is CorT , EnDeT  is the working time of the 

Encryption/Decryption coprocessor, expT is the total experiment time. 
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Figure (7) BW Scheme used in this work 

 

Table II processing Time of the Tasks Evaluated in Real Network Processor [4] 

Task Processing Time (μs/packet) 

Receiving (Rec) 27.3 

IPSec Preprocessing (CorA) 32 

En-/Decryption 12.6 

IP processing (CorB) 49 

Transmission (Trans) 27.3 

 

4.3   ID experiment using Omnet++ 
 

As figure (8) illustrates, ID scheme which is similar to the BW scheme except the Cor 

part. Here the Cor is divided into CorA, EnDe, and CorB. The receiving and Transmission 

blocks do the same job that they did in the BW scheme. The CorA and CorB represent the 

core so that they cannot work at the same time. The time is divided between them under 

supervision of the switch as the following. At the beginning, the switch send No_Token 

message to both of them and then enter a waiting for request mode. This mode ends when 

either CorA or CorB send Request_Token message. The switch gives the token to the first 

request core (First Request First Served). The token that is given by the switch has a time 

expire (Ts).  The token will go back to the switch in these situations: (1) there is a request 

from the other core and the time of the token reaches the limit, (2) the core completes the 

process of the packet so it does not need the token. The switch then resends the token again. 

The CorA/B has the same job. They start with idle state. In this state, the core sends a request 

signal to the previous queue every system clock. When a packet arrives, the core enters the 

request for token mode. A request massage is sent to the switch every system clock. When 

the token is received, the core enters working mode. This mode is interrupted when the 

switch takes the token. The core enters request for token mode. The core continuously 

requests for a token until it is received thus it returns to the working mode. This cycle 

continues until the end of the packet processing. The last block in the ID is the EnDe. The 

EnDe works as delayer. It is first continuously sends a request for a packet from the previous 

fifo signal. When it receives a packet, it enters the busy mode which ends after a certain 

period of time which is taken from table II. At the end of this period, the packet is sent to the 

next fifo by the EnDe.  
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Figure (8) ID Scheme used in this work 

 

                              -- -------------------------------------- (5)                                  

 

              

Where CorAT  and CorBT  are the total working time for the core, while expT  is the total time of 

the experiment.
 
 

 

5   Results and discussions  

 
The packet generator used a random variant from the exponential distribution with 

mean value changed from (0.07ms to 0.1ms) to generate the testing packets. That changed in 

main values will vary the packets generation rate from 14.3k packets/sec to 10k packets/sec. 

Our main aim is to find out the following the number of the processed packets, lost packets, 

and the three main processors (transmitter coprocessor, Core, receiver coprocessor). Another 

interested result we are looking for is queues size for our mathematical model. 

 

We choose 500ms to evaluate the two systems (ID and BW). This time is enough for 

the test because it is much bigger than the total time required to process one packet through 

both systems.  

 

The total number of the processed packets though the two systems are illustrated in 

Figure (9). The mean time of the packet arrival using the exponential distribution is varied 

from 0.07 to 0.1ms with a step equal to 0.005ms. It is obvious from Figure (9) that the ID 

system has superior performance over BW. 
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Figure (9) The number of the output packets during system running  for 0.5 sec.  

  

 

Figure (10) The number of the lost packets 

  

 

  The number of the lost packets due to the over arrival are illustrates in Figure (10). It is 

normal that the lost packets are increased by decreasing the mean value of the arriving 

packets. The BW has lower capacity to accommodate the high arrival packets ( packets/sec ). 

The maximum number of packets in each of the three queues of the BW scheme 

illustrates in Figure (11). Due to the long processing time/packet of the Core, Fifo(2) has the 

highest number. The queue implementation has the maximum size of 100 packets. Because of 

this limitation some of the arriving packets discarded due to the overflow. On the other 

hands, fifo (1) has four as the highest number, yet fifo (3) is always empty. Therefore,  fifo 

(3) can be removed from the scheme, and the size of  fifo (2) can be reduced to four. 
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Figure (11) The maximum number of the packets in the BW scheme  

 

 

 

 

Figure (12) The maximum number of the packets in the ID scheme 

 

Figure (12) illustrates the maximum number of the packets in each queue of the ID 

scheme. The fifo(4) has the highest number of packets, because of the long processing time 

of CorB. On the other hand, fifo (2) has 23 as the highest number,  

and fifo (1) has 4 as the highest number, yet fifo (3) and fifo (5) are always empty. Therefore, 

 fifo (3) and fifo (5) can be removed from the scheme, and the size of  fifo (2) and fifo (1) can 

be adjusted. 
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Figure (13) The receiver coprocessor percentage utilization  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (14) The transmitter coprocessor percentage utilization  

 

Figure (13) and (14) demonstrate the receiver and sender coprocessor utilization. The 

receiver coprocessor is 60% of the time free and in the idle state, while the sender is 65% of 

the time free for both ID and BW. Therefore, both require increasing the utilization. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (15) The core processor percentage utilization 
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Figure (15) demonstrates the Core utilization and shows that the core is 99.8% 

utilized in the ID , but just 86.3% for the BW. This means, the Core has more working time 

in the ID than in the BW which leads to increasing the system throughput and decreasing of 

the packets lost number.  

 

 

6.  Conclusions and future work 

 
   Since the paper of reference number (11) represents an elementary work in this area a 

comparison with its results is thought to be useful. The run length in this paper is set to 

0.5 seconds while in reference (11) it is between 0.00005 and 0.006666 seconds and set to 

0.0001 or 0.0002 seconds. On the other hand, the load in this paper is ( 10000  to 14300 

packets per second ) compared to ( 3 to 1000 packets per second ) in reference number 

(11) as shown in its figure page (41:13).   

 

 The Core can be fully utilized using ID and that is eventually better than BW system for 

high rate networks (Refer to Figure 9 and 10). BW is easier than ID for implementation 

and works fine for an average rate network. As a comparison, reference number (11) 

recommends BW rather than ID contrary to this paper but for lower loads. 

 

 Figure (11 and 12) give good hint about the size of the buffers for the designer, which  

actually depends on the input packet rate. However, this is a different outcome compared 

to reference number (11) where the change of buffer size from 3 to 1000  pkts has shown 

no effect on the performance as figure (11) page (41:13) confirms. 

 

 

 The ID has a total delay time for the packets higher than the BW, and that is because of 

the core time division between the processing of two packets in different stages. 

   

As a future work, other applications can be modeled and tested. Another Network 

Processor can, for example, be modeled and a comparison can be driven from this modeling. 

A memory-access intensive application such as IDP (Intrusion Detection and Prevention) can 

be modeled so that the memory access delay time can be tested and also several measures can 

be examined to reduce it and give a good glow about the best method to adopt. Moreover, 

other interested implementation would be to implement general simulation programs where 

number of stages and the processing time of each stage can be entered in the profile to model 

multi stages network processor. Implementing a simulation system of a multi thread network 

process to figure out the best scheduling techniques, buffer size of each thread, and the 

optimum controller schedule is one of the current interesting problem.  
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