
Ali: Modeling and Analysis of IXP425 Network Processor

116

Modeling and Analysis of IXP425

Network Processor

Fakhraldeen H. Ali Omar F. Ahmed
Computer Engineering Department

University of Mosul – IRAQ

Email: fhali310@yahoo.com

Abstract

There are mainly two kinds of network processor: coprocessors-centric model,

and core-centric model. In the coprocessors-centric, the data-plane is handled by

coprocessors. The core processes most of the data-plane packets yet offloading some

tasks to coprocessors in the core-centric model. The IXP is one of Intel network

processor series which is a core-centric model. They are optimized for home, small-to-

medium enterprise, and networked embedded applications. This work aims to design a

module of IXP425 performing VPN. The processing time for each stage is available in

the datasheet of the IXP425. The Markov chain and Omnet++ has been adopted in this

work to explore the system parameters and bottlenecks focusing on the buffer length

and how to be optimized for each stage. Single process programming is considered in

the IXP425 operation.

Keywords: VPN, network processor, configurability, flexibility, scalability.

 IXP425 اثانشبك وتحهُم اداء معانجومزجت

 عمش فخشٌ أحمذ حامذ عهٍ انذَهفخش

 انعشاق –لسم هىذست انحاسباث فٍ جامعت انمىصم

 انخلاصت

 ىصب حىل كُفُت انمعانجت عهً مستىيمه معانجاث انشبكاث الاختلاف انجىهشٌ بُىهما َ سئُسُانن انك وىعاهى

معانج شبكاث عهً كض هزا انبحثَش حُث اما َتم رنك مه لبم انمعانج انمشكضٌ او مه لبم انمعانجاث انمساعذة. انبُاواث

اوتجته ششكت اوتم حُث تم ومزجت هزا انمعانج واعتماد الاصمىت انمتىفشة فٍ انمىاصفاث انفىُت نه لاجشاء محاكاث نمُاط

أداء أفضم إنًوصىلا نكم مشحهت الأفضمكُض عهً دوائش انعضل وانجم شمع انت وتأشُش الاختىاق أو عىك انضجاجت ادائه

. ++Omnetو Markov chain تبىٍ عىذ

Received: 11 – 4 - 2010 Accepted: 26 – 6 - 2011

mailto:fhali310@yahoo.com

Al-Rafidain Engineering Vol.20 No. 2 March 2012

117

1. Introduction

Security and content-aware processing are part of the features supported by network

applications which demand much more powerful hardware platforms to achieve them. VPN

(virtual private network) needs intensive computational process where general-purpose

processors are often adopted to achieve it. However, the cost is considerable while the

throughput is not satisfactory because of the heavy cryptographic operations [1]. On the other

hand, the application specific integrated circuits (ASICs) can support the performance

requirement with a circuitry designed for both networking and cryptographic processing, yet

it does not have the ability of reconfiguration which makes it less appealing.

Network processors have been considered as an alternative solution to deal with the

above-mentioned problems for their core-processor/coprocessors based architecture on which

control and data-plane processing are separated for efficiency and re-programmability for

functional adaptations. In the core network processor, the complicated operations and control

messages are the core processor responsibility, while a number of multithreaded

coprocessors, having specifically designed instructions for networking purposes (ASIC), are

employed for mass data plane processing. This architecture called coprocessors-centric; is

frequently applied as a core device, which requires simple configurability, but high scalability

[2, 3, 4, 5]. Both control and data-plane packets are processed by the core processor in the

implementation of an edge device which deals with relatively mild traffic volume. This

model is also called the core-centric model. However, tasks need computational intensive

works like receiving, transmission, and en-/de-cryption are offloaded to certain application-

specific coprocessors [4].

 Applications like DiffServ (Differentiated Services), VPN cryptographic algorithms,

and intrusion detection and prevention (IDP) are studied by several researchers who

discovered the feasibility of adopting the core-centric models in packet processing for the

above network applications. Beside the evaluation through implementing both models to find

out system bottlenecks, mathematical modeling is favored for the coprocessors centric model

in order to unveil design implications that are unlikely to be observed through real

benchmarking [3, 6, 7]. In this work, an aim to model IXP425 (Intel network processor)

which is core-centric when it is performing VPN. The XScale core processor of IXP425 has

the packet processing responsibility, yet the coprocessors execute receiving, transmission,

and cryptographic operations [8].

2. Hardware architecture of IXP425

The IXP425 network processor is a highly integrated, versatile single-chip processor

which can be used in a variety of products requiring network connectivity and high

performance. It has a 533MHz XScale core processor which suites handling system

initialization and software objects execution. Also, it has three 133MHz programmable

coprocessors called network processor engines (NPEs) used to execute, in parallel, the code

image stored in an internal memory. Each NPE has an ALU, self-contained internal data

memory and an extensive list of I/O interfaces, together with hardware acceleration elements

that target a set of networking applications providing functions like MAC filtering, CRC

checking/generation, AAL2, AES, DES, SHA-1 and MD5.

Ali: Modeling and Analysis of IXP425 Network Processor

118

Figure (1) Intel IXP425 network processor block diagram

Figure (1) IXP425 network processor block diagram

 In addition to NPEs, IXP425 has application-specific coprocessor which is used for

encryption/decryption operation. The core, coprocessors, and other components are

connected by three buses interconnected by two bridges as in figure (1) [9, 10, 6]. The

IPX425 supports hardware multithreading with a single cycle context switch and that helps

NPEs to reduce memory accesses time with an ideal state number. The XScale core and

coprocessors communicate through hardware queue manager using interrupt and message

queue mechanisms. The queue manager contains 8KB SRAM divided into 64 independent

queues manipulated as circular buffers for allocating free memory space to incoming packets

and for locating packets in the memory. The SDRAM can be expanded up to 256MB for

storing tables, policies and OS applications in addition to packets [8].

3. Detailed packet flow in IXP425

When a packet arrives at the interface of an NPE, it is divided into a number of

partitions of size 32 byte and stored at the Receive FIFO of an Ethernet coprocessor which in

turn performs MAC-related operations. The queue manager of the NPE allocates those parts

in corresponding addresses in SDRAM then interrupts the XScale of the reception for further

processing. When the IXP425 executes procedures like IP and other higher layer protocol

stacks, there is a possibility that authentic and cryptographic operations are needed to

complete such procedures. The core can execute those functions or offloading the

computation overhead to appropriate coprocessors (NPE).

4. VPN overview

Virtual Private Network (VPN) is used to get secure transmission over un-trusted

networks. In the normal VPN, the IPSec protocol is adopted as the underlying technique

because of the popularity of the Internet Protocol. VPN supports data authentication, integrity

Al-Rafidain Engineering Vol.20 No. 2 March 2012

119

Figure (2) The five VPN stages

and confidentiality, in which two gateways

are employed as endpoints constructing a

VPN tunnel for secure data transmission.

Improving the performance of the gateways

is decisive to the VPN throughput [11].

VPN process can be divided into five main

stages (tasks). Three of them can be done by

the coprocessors, yet the rest are executed

by the core itself. The VPN five stages are

(1) receiving, (2) IPSec pre-processing, (3)

en-/decryption, (4) IP processing, and,

finally, (5) transmission. Figure (2)

illustrates those tasks and which part

executes each of them.

The tasks 1, 3 and 5, are offloaded to corresponding coprocessors, namely, the

receiving coprocessor, computational coprocessor, and transmission coprocessor,

respectively, whereas tasks 2 and 4 are handled by the core through multiprogramming and

context switching.

4.1 Architectural assumptions

From figure (3) it can be

understood that the core has the

responsibility of both IPSec pre-

processing and IP Processing;

therefore, the core must have a

mechanism to handle those tasks

in parallel. Despite of the fact

that many network processors

can run hardware multithreading

to reduce memory access latency

through changing the running

process with another when

memory access is needed. In general, hardware multithreading requires duplicating buffers

and registers, and that means increase in fabrication cost. This technique is efficient only

when memory-access intensive applications, such as DiffServ and IDP are executed. Thus, a

single thread is considered in each coprocessor because VPN is the application modeled in

this work. Buffer space for each processing stage is also encompassed, except for the BW
(Busy-Waiting) scheme, which needs no buffer between the core and the computational

coprocessor.

4.1.1 The busy-waiting scheme

 Busy-Waiting (BW) is the first way to model the VPN. BW does not need any buffer

between the core and computational coprocessor. That means, the core must wait until the

computational coprocessor complete its work before resuming execution. In other words,

after finishing IPSec preprocessing by the core, the result is passed (offloaded) to the

computational coprocessor for en-/decryption. At the end of en-/decryption phase, the core

Figure (3) Processing flow and task allocation of the

VPN application over IXP425 (logical view)

Ali: Modeling and Analysis of IXP425 Network Processor

121

receives the result for IP processing. From the above description, the core and the

computational coprocessor can be seen as different processes in a logical CORE processor,

since only one of them can be active at any time. The BW scheme can be described as a

series of queues consisting of three servicing stations, as shown in figure (4) [11].

 Figure (4) Modeling BW using queue

 Each queue in the BW is M/M/1/∞ type, and the interval rate of each one is equal to

the departure rate of the previous one except the Rec queue where its rate is equal to the input

rate. The CORE utilization can be calculated using the following equation:

-------------------------------------- (1)

Where μR denotes the mean arrival rate at the Core which is the same with the mean

departure rate from the receiving coprocessor. TCoreA, Tcop and TCoreB represent the

processing time for IPSec preprocessing, en-/decryption and IP processing, respectively.

Finally, we can obtain the utilizations for core and computational coprocessor as:

 ----------------------------------- (2)

 ----------------------------------- (3)

This is because CORE contains both the core processor and computational

coprocessor.

4.1.2 The interrupt-driven scheme

 The second way to module VPN is the Interrupt-Driven (ID). The core does

not need to wait the computational coprocessor to complete its current task. Instead the core

passes the results from IPSec preprocessing to the computational coprocessor and resumes

without being blocked. That means the core has to run IPSec preprocessing and IP processing

in parallel; therefore, a buffer is required between the core and coprocessor. In other words,

after the completion of IPSec preprocessing, the packet is passed to the coprocessor’s buffer,

the core switches, with a switching delay TD, to the other process for performing IP-related

operations so that the core is not stalled. The switching does not happen after only finishing

'1

__)(


BCoreCopACore

CORE
TTT

R
U



BCoreCopACore

BCoreACore

CORECore
TTT

TT
xUU

__

__






CoreCORECop UUU 

Al-Rafidain Engineering Vol.20 No. 2 March 2012

121

IPSec preprocessing but after a certain period of process run length. According to the above

descriptions, the ID can be described using Markov chain, where the system performance is

divided into six states, five of them are R, A, C, B and T for the five processing stages

(Receiving, IPSec preprocessing referred to as CoreA, en-/de-cryption referred to as Cop, IP

processing referred to as Core B, and Transmission) while the sixth S denotes the process

switching. As shown in figure (5), S = 0/S = 1 means the core is processing packets at Core

A/Core B; it then switches to an intermediate state S = 2/S = 3 after a run length of TS0/TS1,

and waits for TD to finish the context switch. Using multi-process mechanism does not mean

that the core will be in an execution state all the time and there is no wait state. The core will

be in the wait state for the following situations:

1- Packet arrivals from its predecessor.

2- Available buffer slots in its successor to which the processing result is passed.

From the above descriptions, the effective core utilization can be derived by

subtracting the busy-waiting overhead from overall core utilization. However, to achieve this

in the simulation, the following steps must be considered.

(1) Setting appropriate run lengths TS0 and TS1 so that the processing resource is reasonably

distributed.

(2) Characterizing appropriate transition conditions so as to ensure that context switches are

performed upon those conditions [11].

* Λ The mean of the packet arrival rate.

* The mean run length of the packet at Core A.

* The mean run length of the packet at Core B.

* The mean switching rate of core from 0 to 1. λs0 = 1/TS0.

* The mean switching rate of core from 1 to 0. λs1 = 1/TS1.

* The mean context switch delay.

* 1/TD

* The mean service rate of processing stage X .

* The buffer size of processing stage X .

Figure (5) The interrupt driven model

Ali: Modeling and Analysis of IXP425 Network Processor

122

All possible transitions necessary to perform packet processing are listed in Table I

and explained as follows: The core switches form 0/1 means CoreA/CoreB or reverse if the

following conditions are met:

(1) The run length time has been reached (TS0 for CoreA and TS1 for CoreB).

(2) The corresponding active stage (either CoreA or CoreB in which the PCS resides) does

not have any packet but the other does.

At the same time switching will not occur for the following conditions:

(1) The target stage to which PCS is going to switch has no packets.

(2) The successor of the target stage has no buffer left.

Whenever the switching happens from 0 to 1 or from 1 to 0 the delay TD must be added.

Table I State transitions in the ID scheme [10]

Component Transition Type Condition(s) Rate

Receiving Arrival R < bufR λ

 Departure A < bufA μR

Core A Arrival follower of Rec n/a

 Departure PCS=0, C < bufC μA

Cop Arrival follower of Core A n/a

 Departure B < bufB μC

Core B Arrival follower of Cop n/a

 Departure PCS = 1, T < bufT μB

Transmission Arrival follower of Core B n/a

 Departure n/a μT

PCS

0 => 2

A > 0, B > 0 λS1

(A = 0, B > 0) or C =bufC ∞

(B=0) or T =bufT 0

2 => 1 n/a λD

1 => 3

A>0, B>0 λS2

(A >0, B = 0) or T =bufT ∞

(A=0) or C =bufC 0

3 => 0 n/a λD

Where:
 : The mean of the Packet Arrival rate.

 µX: The mean service rate of processing stage X.

 bufX : The Buffer size of processing stage X.

 PCS: Packet Context Switch.

 X : The mean Arrival rate of processing stage X.

Figure (6) illustrates a state example whose buffer size equals to 3 for each stage and

the corresponding transitions in which are five transiting into the state and others are

transiting out from the state. While the inbound and outbound transitions are comprehensible,

special note needs to be considered for the PCS, namely the PCS in the example state never

transits from 0 to 1. This is because the Core B cannot pass the processed packet to the

transmission stage, which is already full. The transition of PCS from 0 to 1 simply

Al-Rafidain Engineering Vol.20 No. 2 March 2012

123

contributes to the unnecessary overhead and, therefore, is considered an invalid transition

[11].

Figure (6) State transitions example of the interrupt-driven model

4.2 BW experiment using Omnet++

As mentioned in the previous section, the BW modeling can be described as one block.

This block represents CorA, Cop, And CorB. That means the Cor is not only doing the core

works (IPSec preprocessing and IP Processing) but also the coprocessor work (en/de-

cryption). For this project, the exponential distribution is considered for generating the

packets in the gen block to compare our result with the work in [11]. A variety of values used

as a mean value of this function so the system can be tested under different load values and

also different run time durations. The queues used are of type M/M/1/100. That means the

maximum number of the packets which can be stored in it is 100 otherwise the packet will be

discarded by the queue due to unavailability of spacing. Both the Receiver and Transmitter

blocks work as delayer with values taken from the IXP425 datasheets. Whenever any of them

finishes its job the completed packet is sent to the next fifo and a request signal is sent to the

previous buffer. Thus, the previous fifo will send the oldest packet in its queue. The sink

block is used for statistic operations. Thus, it collects the packet out from the transmitter

block and calculates the time. When the Cor is in the idle state, for example the NP just work,

the Cor sends a request signal to previous fifo asking for a packet. When a new packet

arrives, it passes three processing stages (IPSec preprocessing, en/de-cryption and IP

Processing). This can be represented as three delay blocks. The delay time for those blocks is

also taken from the IXP425 datasheets. During the processing time of this packet, the Cor

will be in the busy state and it can process any other packet. Figure (7) illustrates the BW

scheme.

 -------------------------------------- (4)

Where the total working time of the Core block is CorT , EnDeT is the working time of the

Encryption/Decryption coprocessor, expT is the total experiment time.

1,2,1,2,2,0

(R, A, C, B, T, S)

1,2,1,1,3,0

μB

0,3,1,1,3,0

μR

1,1,2,1,3,0
μA

1,2,2,0,3,0
μC

1,3,0,1,3,0 μA

2,1,1,1,3,0

μR

0,2,1,1,3,0

λ
λ

μT

2,2,1,1,3,0

1,2,1,1,2,0

1,2,0,2,3,0 μC

expT

TT
utilizecoreThe EnDeeCor 

Ali: Modeling and Analysis of IXP425 Network Processor

124

Figure (7) BW Scheme used in this work

Table II processing Time of the Tasks Evaluated in Real Network Processor [4]

Task Processing Time (μs/packet)

Receiving (Rec) 27.3

IPSec Preprocessing (CorA) 32

En-/Decryption 12.6

IP processing (CorB) 49

Transmission (Trans) 27.3

4.3 ID experiment using Omnet++

As figure (8) illustrates, ID scheme which is similar to the BW scheme except the Cor

part. Here the Cor is divided into CorA, EnDe, and CorB. The receiving and Transmission

blocks do the same job that they did in the BW scheme. The CorA and CorB represent the

core so that they cannot work at the same time. The time is divided between them under

supervision of the switch as the following. At the beginning, the switch send No_Token

message to both of them and then enter a waiting for request mode. This mode ends when

either CorA or CorB send Request_Token message. The switch gives the token to the first

request core (First Request First Served). The token that is given by the switch has a time

expire (Ts). The token will go back to the switch in these situations: (1) there is a request

from the other core and the time of the token reaches the limit, (2) the core completes the

process of the packet so it does not need the token. The switch then resends the token again.

The CorA/B has the same job. They start with idle state. In this state, the core sends a request

signal to the previous queue every system clock. When a packet arrives, the core enters the

request for token mode. A request massage is sent to the switch every system clock. When

the token is received, the core enters working mode. This mode is interrupted when the

switch takes the token. The core enters request for token mode. The core continuously

requests for a token until it is received thus it returns to the working mode. This cycle

continues until the end of the packet processing. The last block in the ID is the EnDe. The

EnDe works as delayer. It is first continuously sends a request for a packet from the previous

fifo signal. When it receives a packet, it enters the busy mode which ends after a certain

period of time which is taken from table II. At the end of this period, the packet is sent to the

next fifo by the EnDe.

Al-Rafidain Engineering Vol.20 No. 2 March 2012

125

Figure (8) ID Scheme used in this work

 -- -------------------------------------- (5)

Where CorAT and CorBT are the total working time for the core, while expT is the total time of

the experiment.

5 Results and discussions

The packet generator used a random variant from the exponential distribution with

mean value changed from (0.07ms to 0.1ms) to generate the testing packets. That changed in

main values will vary the packets generation rate from 14.3k packets/sec to 10k packets/sec.

Our main aim is to find out the following the number of the processed packets, lost packets,

and the three main processors (transmitter coprocessor, Core, receiver coprocessor). Another

interested result we are looking for is queues size for our mathematical model.

We choose 500ms to evaluate the two systems (ID and BW). This time is enough for

the test because it is much bigger than the total time required to process one packet through

both systems.

The total number of the processed packets though the two systems are illustrated in

Figure (9). The mean time of the packet arrival using the exponential distribution is varied

from 0.07 to 0.1ms with a step equal to 0.005ms. It is obvious from Figure (9) that the ID

system has superior performance over BW.

expT

TT
utilizecoreThe CorBCorA

Ali: Modeling and Analysis of IXP425 Network Processor

126

0

1000

2000

3000

4000

5000

6000

7000

7E-05 7.5E-05 8E-05 8.5E-05 9E-05 9.5E-05 0.0001

n
u

m
b

e
r

o
f

p
ak

e
ts

the mean value of the packet generation (sec)

ID

BW

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.00007 0.000075 0.00008 0.000085 0.00009 9.50E-05 1.00E-04

th
e

lo
st

 p
ac

ke
ts

the mean value of the packet generation (sec)

ID

BW

Figure (9) The number of the output packets during system running for 0.5 sec.

Figure (10) The number of the lost packets

 The number of the lost packets due to the over arrival are illustrates in Figure (10). It is

normal that the lost packets are increased by decreasing the mean value of the arriving

packets. The BW has lower capacity to accommodate the high arrival packets (packets/sec).

The maximum number of packets in each of the three queues of the BW scheme

illustrates in Figure (11). Due to the long processing time/packet of the Core, Fifo(2) has the

highest number. The queue implementation has the maximum size of 100 packets. Because of

this limitation some of the arriving packets discarded due to the overflow. On the other

hands, fifo (1) has four as the highest number, yet fifo (3) is always empty. Therefore, fifo

(3) can be removed from the scheme, and the size of fifo (2) can be reduced to four.

Al-Rafidain Engineering Vol.20 No. 2 March 2012

127

0

20

40

60

80

100

120

0.00007 0.000075 0.00008 0.000085 0.00009 9.50E-05 1.00E-04

Q
u

e
u

e
 s

iz
e

(p
ak

e
ts

)

the mean value of the packet generation (sec)

FIFO(1)

FIFO(2)

FIFO(3)

0

20

40

60

80

100

120

0.00007 0.000075 0.00008 0.000085 0.00009 9.50E-05 1.00E-04

Q
u

e
u

e
si

ze
 (

p
ac

ke
ts

)

the mean value of the packet generation (sec)

FIFO (1)

FIFO (2)

FIFO (3)

FIFO (4)

FIFO (5)

Figure (11) The maximum number of the packets in the BW scheme

Figure (12) The maximum number of the packets in the ID scheme

Figure (12) illustrates the maximum number of the packets in each queue of the ID

scheme. The fifo(4) has the highest number of packets, because of the long processing time

of CorB. On the other hand, fifo (2) has 23 as the highest number,

and fifo (1) has 4 as the highest number, yet fifo (3) and fifo (5) are always empty. Therefore,

 fifo (3) and fifo (5) can be removed from the scheme, and the size of fifo (2) and fifo (1) can

be adjusted.

Ali: Modeling and Analysis of IXP425 Network Processor

128

0

5

10

15

20

25

30

35

40

45

7E-05 7.5E-05 8E-05 8.5E-05 9E-05 9.50E-05 1.00E-04

ID

BW

0

5

10

15

20

25

30

35

7E-05 7.5E-05 8E-05 8.5E-05 9E-05 9.50E-05 1.00E-04

ID

BW

0

50

100

7E-05 7.5E-05 8E-05 8.5E-05 9E-05 9.50E-05 1.00E-04

ID

Figure (13) The receiver coprocessor percentage utilization

Figure (14) The transmitter coprocessor percentage utilization

Figure (13) and (14) demonstrate the receiver and sender coprocessor utilization. The

receiver coprocessor is 60% of the time free and in the idle state, while the sender is 65% of

the time free for both ID and BW. Therefore, both require increasing the utilization.

Figure (15) The core processor percentage utilization

Al-Rafidain Engineering Vol.20 No. 2 March 2012

129

Figure (15) demonstrates the Core utilization and shows that the core is 99.8%

utilized in the ID , but just 86.3% for the BW. This means, the Core has more working time

in the ID than in the BW which leads to increasing the system throughput and decreasing of

the packets lost number.

6. Conclusions and future work

 Since the paper of reference number (11) represents an elementary work in this area a

comparison with its results is thought to be useful. The run length in this paper is set to

0.5 seconds while in reference (11) it is between 0.00005 and 0.006666 seconds and set to

0.0001 or 0.0002 seconds. On the other hand, the load in this paper is (10000 to 14300

packets per second) compared to (3 to 1000 packets per second) in reference number

(11) as shown in its figure page (41:13).

 The Core can be fully utilized using ID and that is eventually better than BW system for

high rate networks (Refer to Figure 9 and 10). BW is easier than ID for implementation

and works fine for an average rate network. As a comparison, reference number (11)

recommends BW rather than ID contrary to this paper but for lower loads.

 Figure (11 and 12) give good hint about the size of the buffers for the designer, which

actually depends on the input packet rate. However, this is a different outcome compared

to reference number (11) where the change of buffer size from 3 to 1000 pkts has shown

no effect on the performance as figure (11) page (41:13) confirms.

 The ID has a total delay time for the packets higher than the BW, and that is because of

the core time division between the processing of two packets in different stages.

As a future work, other applications can be modeled and tested. Another Network

Processor can, for example, be modeled and a comparison can be driven from this modeling.

A memory-access intensive application such as IDP (Intrusion Detection and Prevention) can

be modeled so that the memory access delay time can be tested and also several measures can

be examined to reduce it and give a good glow about the best method to adopt. Moreover,

other interested implementation would be to implement general simulation programs where

number of stages and the processing time of each stage can be entered in the profile to model

multi stages network processor. Implementing a simulation system of a multi thread network

process to figure out the best scheduling techniques, buffer size of each thread, and the

optimum controller schedule is one of the current interesting problem.

References

[1] Braun, T., G¨unter, M., Kasumi, M., and Khalil, I. Virtual Private Network Architecture.

Technical Report. IAM-99-001, CATI, 1999.

[2] Clark, C. at AL., A Hardware Platform for Network Intrusion Detection and Prevention.

In Proceedings of the 3
rd

 Workshop on Network Processors and Applications (NP3). Madrid,

Spain, 2004.

Ali: Modeling and Analysis of IXP425 Network Processor

131

[3] Comer, D. and Martynov, M., Building Experimental Virtual Routers With Network

Processors. In Proceedings of the 2nd International Conference on Test beds and Research

Infrastructures for the Development of Networks and Communities (TRIDENTCOM). 2006.

[4] Lin, Y.-N., Lin, C.-H., Lin , Y.-D., and Lai, Y.-C., VPN Gateways Over Network

Processors: Implementation and Evaluation. In Proceedings of the 11th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS’05). San- Francisco, CA. 2005

[5] Lin, Y.-D., LIN, Y.-N., Yang, S.-C., and Lin, Y.-S.,. DiffServ Edge Routers Over

Network Processors: Implementation and evaluation. IEEE Netw. Vol. 17, No. 4, pp 28–34.,

2003

 [6] LU, J. and Wang, J., Analytical Performance Analysis of Network-Processor-Based

Application Designs. In Proceedings of the 15th International Conference on Computer

Communications and Networks (IC3N’06). IEEE Press, Los Alamitos, CA. pp 33–39, 2006.

[7] Wolf, T. And Franklin, M. K., Performance Models for Network Processor Design. IEEE

Trans. Parallel Distribution System Vol. 17, No. 6, pp 548–561, 2006..

[8] Lekkas, P. C., Network Processors: Architectures, Protocols and Platforms (Telecom

Engineering), McGraw-Hill, New York, 2003..

[9] Intel IXP425 Network Processor.

http://www.intel.com/design/network/products/npfamily/ixp425.htm.

[10] Intel IXP2400 Network Processor.

 http://www.intel.com /design/network/products npfamily/ixp2400.htm.

[11] LIN , Y. , LIN, Y. , LAI, Y. , and TSENG, K., Modeling and Analysis of Core-Centric

Network Processors. ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4,

Article 41, 2008.

The work was carried out at the college of Engineering. University of Mosul

http://www.intel.com/design/network/products/

