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ABSTRACT  
The  theory of automata combines ideas from engineering, linguistics, mathematics, philosophy, etc. The 

Entscheidungsproblem asks if it is possible to design a series of steps that replaces a mathematician. An automaton is an 

abstract machine that processes data. C. Shannon's theory is today's most popular despite having no relationship with the 

other. The Kt system is called "minimal" because it makes no assumptions about the structure of time. In LKt, we have four 

monary temporal operators, F, P, G and H, which are mutually interdefinable. Interdefinability means that we will pass 

logic in the future is the same as saying I will never fail logic,  interpreting not passing logic as failing logic. The minimal 

system syntax of temporal logic introduces operators that have the property of being defined in terms of others. Modal 

logic studies the reasoning that involves the use of expressions "necessarily" and "possibly". In this article, we will 

represent through a finite automaton the temporal logic formula Fp. It allows us to see an acceptance pattern for Fp by 

considering two variables: p and q. Kt's axiomatic system of time expresses the idea that both the present and the past are 

fixed, if it has always been in the past that it will be some time in the future that p is now. No philosophical argument 

supports deterministic time flow; the logic of time must be open.Temporal logic has revived many old problems, from the 

Megaric-Stoics to the minimal system of temporal logic. Our work suggests that the future operators of system Kt follow 

an evaluation pattern, but we must be cautious because this pattern can only apply to models whose time flow is based on 

instants and precedence relations.  
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1. INTRODUCTION 

Converging disciplines create issues and 

problems in many fields. This is the case with the 

theory of automata, which combines ideas from 

engineering, linguistics, mathematics, philosophy, 

etc.[1] The theory of automata is a theoretical 

discipline that belongs to a broader field. Computer 

science specifies algorithmic processes using a 

formal language[2]. Next, we will describe[3] 

three fundamental contributions to the automata 

theory. First, Hilbert's formalist program and its 

relationship with Turing and Church's works 

define computing's limits. Second, formalizing an 

abstract machine. Third, automata and formal 

languages.D. Hilbert's (1982-1943)[4] Ents 

cheidungs problem asks if all mathematical truths 

can be derived from an axiomatic system[5]. The 

task would be to develop a system to decide the 

truth or falsity of each mathematical statement 

syntactically.  

It resembles Leibniz's company, but 

symbolic logic was already available. The 

Entscheidungsproblem[6] asks if it is possible to 

design a series of steps that replaces a 

mathematician. Kurt Gödel[7] , Alan Turing[8], 

and Alonzo Church[6] stood up to him: (1903 - 

1995). Gödel's proposal requires understanding 

consistency, completeness, and decidability. If a 

formula A has a formal proof, it is universally valid 

symbolically, according to consistency (1-A then 

11-A). If a formula A is a tautology, then A has a 

proof in the system (11-A then 11-A). A formal 

system is decidable if we can decide in a finite 

number of steps if a formula is valid[9]. Classical 

logic is decidable because truth function.
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Automatically determine if a formula is 

valid in a finite number of steps.After clarifying 

these concepts, we can list the authors' 

contributions. Gödel's incompleteness theorems 

show that any consistent recursive arithmetic 

theory is incomplete. Axiomatic theories can not 

prove their own consistency. First, in a recursive 

arithmetic system where all provable formulas are 

valid, there will be some valid formula that cannot 

be derived in the system (neither it nor its 

negation). Second, the second part of the 

incompleteness theorem is a negative answer to the 

Entscheidungsproblem. We can not tell if a 

theory's formula belongs to it. Turing and Church 

independently addressed a question in 1936. 

Church introduced calculus and Turing machines 

[10]. A Turing machine (TM) can recognize a 

formula but not determine its truth. Turing's work 

defined the limits of computation, or what 

problems an abstract machine can solve. 

Church discusses the history of logic and 

automata in Logic, Arithmetic, and Automata. This 

article focuses on using formal logic beyond 

propositional calculus to describe an automaton, an 

abstract machine and second  automata theory 

contribution. Church notes that Boolean algebra 

can be used to analyze combinational circuits[11].  

C. Shannon (1916-2001)[12] best 

exemplified this idea, but it had different origins 

and destinations. V. Shestakov (1907-1987)[13] 

developed this model in 1934/35 but didn't publish 

it until 1941. In 1938, in two parts of the world, C. 

Shannon and Japanese A. Hanzawa[1]. Shannon's 

theory is today's most popular despite having no 

relationship with the other. In 1943, neural network 

behavior was analyzed logically. McCulloch and 

Pitts[14] introduced this idea in the given year to 

formally describe neural network behavior. J. von 

Neumann[15] applied McCulloch and Pitts' ideas 

to digital circuits in 1945, so S. Kleene[16] defines 

the first finite automaton in the representation of 

events in nerve nets and finite automata[17].  

The section 3.2 defines automaton 

strictly. Automata accept external signals, process 

information, and respond. Dishwashers, mobile 

phones, lamps, and some daily activities can be 

considered automata. The simplest automaton is 

finite, while the Turing machine is the most 

complex. Stack and linearly bounded automata use 

different formal resources[18]. Automata types 

and Chomsky's hierarchy are similar. Chomsky's 

hierarchy[19] was introduced in 1956/59 in two 

articles that establish the correspondence between 

formal grammar  and the type of automaton43. Just 

as there are four types of automata, the hierarchy 

has four levels that go according to complexity. 

Automata are abstract machines that process data.  

As a result of Hilbert's formalist program, 

Turing and Church showed that these processes 

have limits. Now,   the formal limits have been set, 

a formal definition of an automaton is needed. This 

was done by Kleene. Using the formal definition 

and processing limits, Chomsky gives us a 

hierarchy that defines the formal language that 

recogise our automaton. We can interpret many of 

the above problems as conceptual problems, so a 

good philosophical analysis can shed light on 

them. Rather than answer these questions, we've 

provided an overview of the disciplines involved in 

this field. 

Interdisciplinarity has created several 

advances and challenges. Temporal logic shows 

how interdisciplinary study can be successful. 

Philosophy, ethics, logic, mathematics, languages, 

and theoretical informatics shaped its 

development. This work examines the influence of 

temporal logic and finite automata. In 

"Background," we'll briefly explore temporal logic 

and automata theory to achieve our goal. This 

section outlines the important contributions to both 

scientific fields. In "present state," we will discuss 

our main thesis. We divide the section into three 

parts  . The first explores Kt's syntax, semantics, 

and axiom system. Second, finite automata are 

introduced. The third section shows how to build   

finite automata for Fp and Gp. Formulas and their 

explanations follow this pattern. In "discussion and 

positioning," we ponder philosophically on the 

temporal flow axioms and their link to the paper. 

In the section of  «conclusions and open paths»  , 

the findings of this work and some philosophical 

issues related to logic-automata relationships are 

discussed. 

2. ACTUAL STATE 

This section compares temporal logic to 

automata theory. A general definition and formal 

approach to temporal logic are given. The basic 

concepts of automata theory are introduced and 

defined very generally. The relationship between 

temporal logic and automata theory is established 

by building automata for F and G, explaining their 

operation and properties. 

2.1. TEMPORAL LOGIC KT 

Specific questions follow. A formal 

system consists of a formal language L, syntax, 

semantics, an axiomatic system, and rules of 

inference[20]. Natural language has an alphabet to 

form words and   grammar to indicate well-formed 

sentences. Using the alphabet (a, b, c,... z), we can 

form the word «lamp». If we want to form a 

grammatically correct sentence like "the lamp is 

on," we would first check if each word is in the 

English vocabulary, then check gender and number 

agreement, etc. Formal languages specify 

primitive symbols and syntax. Vocabulary or the 

alphabet are primitive symbols. The vocabulary 

includes logical, non-logical, and punctuation 

symbols. 



  232 Bilal Abdullateef Kareem: The Influence of Temporal Logic on…..

   

Al-Rafidain Engineering Journal (AREJ)                                             Vol.28, No.1, March 2023, pp. 230-238 

 

The non-logical symbols are the so-called 

propositional variables (p, q, r), and the logical 

symbols are the so-called logical connectors (¬, ∧, 

∨,→, ↔), and the punctuation marks are usually 

parentheses ( ), braces [1], brackets [ ], commas, 

etc. Then, the rules must be taken into account to 

join the elements of the vocabulary, this set of rules 

is called formal grammar or syntax. These rules 

state that propositional variables are well-formed 

formulas (wff) and that certain compound formulas 

from propositional variables and logical 

connectors are wffs as well. For example, the 

following formulas are fbfs: p,(p ↔ r), a ∧ ¬a.  

They would not be fbfs: ∧ ∨ r,(¬a →)p). 

A logical system can be represented as an 

axiomatic system. An axiom system is made up of 

a set of formulas (axioms) that are taken as given 

and that collect important characteristics of the 

system, from which all the other formulas 

(theorems) are proved. Therefore, a theorem would 

be that fbf that has a proof from the axioms of the 

system. 

Interpreting logical and non-logical terms 

gives a formal system semantics. Tarski's[21] 

semantic concept of the truth underpins classical 

logic's standard interpretation. The Kt system is 

called "minimal" because it makes no assumptions 

about the structure of time[11]. In the next lines, 

we will define the minimum system of temporal 

logic's syntax, semantics, and axioms. 

2.1.1. KT SYNTAX AND SEMANTICS 

Temporal logic is a reinterpretation of 

modal logic in temporal terms. The next 

explanation must include this. Here are the syntax 

and main components of the minimum system of 

temporal logic. A formal system consists of a 

language, in this case, LKt, the minimum system 

of temporal logic. 

According to the definition of formal language that 

we have given, LKt is made up of logical 

connectors and propositional variables. let φ the set 

of pro-positional variables of LKt, where φ = {p, 

q, r, . . .}, and ϕ any fbf. The logical connectors are 

the usual ones of the classical logic of propositions; 

conjunction ∧, disjunction ∨, negation ¬, 

implication → and co-implication ↔, in addition 

four monary temporal operators[22] are 

introduced: “it will be sometime in the future that 

ϕ” (Fϕ), “it was sometime in the past that ϕ” (Pϕ ), 

“it will always be in the future that ϕ” (Gϕ) and “it 

has always been in the past that ϕ” (Hϕ). The time 

operators are mutually interdefinable: Fϕ =def 

¬G¬ϕ and Pϕ =def ¬H¬ϕ. Interdefinability is very 

easy to explain. On the one hand ,we have the 

formula Fϕ, let's replace ϕ with «approve logic» the 

phrase then would be; "it will be sometime in the 

future that I will approve logic", which indicates 

that it will be sometime in the future that I will 

approve logic. On the other hand, we have the 

formula ¬G¬ϕ, which substituting means «that is, 

it will not happen at all times in the future that 

suspend logic» . That is, saying I will pass logic in 

the future is the same as saying I will never fail 

logic, interpreting not passing logic as failing logic. 

The following formula is similar. The formulas  

 

are "I've passed logic before" and "I haven't always 

passed logic." In other words, I failed logic at some 

point in the past, which means I haven't always 

failed logic. 

Taking into account that temporal operators are 

mutually interdefinable, we can formally and 

recursively define the set of fbfs of temporal logic 

(Φ) as [23]: 

       Φ = φ | ¬ϕ | (ψ ∨ ϕ) | (ψ ∧ ϕ) | (ψ → ϕ) | Fϕ | 

Pϕ | Gϕ | Hϕ 

The set of fbfs called Φ, is composed of 

the set of variables propositions les φ, recall that φ 

= {p, q, r, . . . . . .} and ϕ/ψ, any fbf. The negation 

of a fbf is also a fbf (¬ϕ). If ϕ and ψ are fbfs, so are 

(ϕ ∨ ψ), (ψ ∧ ϕ), (ψ → ϕ). They are also fbfs Fϕ, 

Pϕ, Gϕ and Hϕ. The minimal system syntax of 

temporal logic introduces temporal operators that 

have the property of being defined in terms of 

others Note the link between temporal logic and 

modal logic in terms of their operators. Modal 

logic studies the reasoning that involves the use of 

expressions "necessarily" and "possibly"[24].  

However, understanding the term modal 

logic in a broader way, it would be a family of 

logics with similar rules and a variety of symbols. 

In such a case, temporal logic would be a family of 

modal logic. F and P could be interpreted as 

operators of possibility "" for the future and past, 

just as the operators G and H can be interpreted as 

operators of necessity "" for both the future and 

the past, respectively[2]. 

Prior introduces temporary operators to 

the Kt language and formation rules. All these 

symbols need meaning. Next, it is to explain Kt's 

semantics. Before tackling such work, we must 

review classical logic's semantics. Since temporal 

logic extends classical logic, its operators are the 

same. Classical logic semantics involve assigning 

true or false to each fbf   [20]. Classical logic only 

allows 0 for false and 1 for true propositions. . An 

evaluation function v relates proposition variables 

to their truth values[25], so.: 

ν(¬ϕ) = 1 syss ν(ϕ) = 0, 

ν(¬ϕ) = 0 syss 1(ϕ) = 1, 

ν(ϕ ∧ ψ) = 1 syss ν(ϕ) = 1 y ν(ψ) = 1, 

ν(ϕ ∨ ψ) = 1 syss ν(ϕ) = 1 o ν(ψ) = 1, 

ν(ϕ → ψ) = 0 syss ν(ϕ) = 1 y ν(ψ) = 0, 
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➢ Where «syss» means if and only if, and «ϕ, ψ» 

are any propositional formula.  

As we see, propositional formulas are 

interpreted as truth values; for example, the 

expression: «it rains and I get wet»   is formalized 

by the propositional formula (ϕ∧ψ), where( ϕ) 

corresponds to «it rains» and (ψ )to «I get wet», can 

be true {1}or false {0}. The truth value is 

inductively determined by an evaluation function 

on all the operators of classical logic. A property 

of this semantic definition indicates that the truth 

value of a formula is fixed, in the case of (ϕ ∧ ψ) it 

will only be true when both propositional variables 

are true. In all other situations, (ϕ) true and (ψ) 

false, (ϕ) false and (ψ )true, (ϕ) false and (ψ) false, 

the evaluation of that formula is false. The rest of 

the interpretations follow the same scheme. 

But if the value is fixed, how could we 

formalize expressions whose truth value depends 

on the time at which they have been stated? The 

idea is to associate the evaluation functions with a 

flow of time[26]. Formally, a time flow is a 

relational structure: T = (T, < is a binary relation 

on T, called a precedence relation. The elements of 

T are called points in time; if a pair (s, t) belongs 

to < , , we can say that s is prior to t “In the 

literature, any relation is normally represented as 

R. For practical reasons, we now adopt the < 

symbol for temp logic”. The precedence relation 

has at least two basic properties: the 

irreflexive(The irreflexive property tells us that no 

element of the set is related to itself. Formally: 

∀a(a ∈ A : (a, a) ∉/<))  and transitive property.If 

one element is related to another different element 

and this different element is related to a third party 

other than the two others, then the first is related to 

the third. Formally: ∀a, b, c(a, b, c ∈ A : a < b ∧ b 

< c → a < c) Therefore, an evaluation function ν 

over a time stream T assigns the value true or false 

to the set of propositional variables φ in the non-

empty set of time instants T. It is formally defined 

as follows: ν : (T → (φ → {0, 1})) In this way, a 

model of temporal logic is a pair MKt = (T, ν) 

consisting of a time stream T and an evaluation 

function ν.  

Now, with this definition, we can already 

interpret well-formed formulas at each point of the 

model. For example, we can say that the formula p 

∧ ¬q is true at time t, precisely if ν(p, t) = 1 and ν(q, 

t) = 0. Thus, we proceed to give the inductive 

definition of the notion of truth of a formula ϕ 

(semantics) at a time t in a model MKt = (T, <, ν): 

ν(q, t) = 1 o ν(q, t) = 0, 

ν(¬ϕ, t) = 1 syss ν(¬ϕ, t) = 0, 

ν(ϕ → ψ, t) = 1 syss ν(ϕ, t) = 1 y ν(ψ, t) = 1, 

ν(Fϕ, t) = 1 syss ∃s ∈ T(t < s ∧ ν(ϕ, s) = 1) 

ν(Pϕ, t) = 1 syss ∃s ∈ T(s < t ∧ ν(ϕ, s) = 1) 

For the operators G and H, the semantics would be 

defined as follows: 

ν(Gϕ, t) = 1 syss ∀s ∈ T(t < s → ν(ϕ, s) = 1), 

ν(Hϕ, t) = 1 syss ∀s ∈ T(s < t → ν(ϕ, s) = 1) 

A temporal logic formula ϕ is valid in the 

system Kt , if and only if ν(ϕ, t) = 1 is true at all 

time instants in all temporal models. A formula ϕ 

is true or satisfied if it is true at some instant of time 

in some temporal model. For example, consider the 

ordered set of natural numbers N, in which τ is an 

evaluation function that makes q true for all 

numbers greater than 1000 and r true for all odd 

numbers. With this evaluation function, it can be 

seen that the formula FGq is valid from point 0. 

The formula tells us: «it will be sometime in the 

future that it will always be in the future that q > 

1000». 

However, if we say “it will always be in 

the future that q > 1000”, it is not valid, since if we 

start from point 0, it is not true that point 1 is 

greater than 1000, and so on. We can also see that 

the formula FGr is not valid from point 0, since it 

does not hold that "it will be sometime in the future 

that it will always be in the future that r"; in other 

words, imagine point 11, followed by point 12. 

From some time in the future (point 11) it does not 

follow that 'it will always be in the future that r is 

odd'. However the proposition GFr; "It will always 

be in the future that it will be some time in the 

future that r is an odd number" is valid, since if we 

start from any point, it is true that always in the 

future we will find an odd number. 

Up to this point, we have described the 

syntax and semantics of Kt .  Concerning 

semantics, we can say that it is closely related to 

the semantics of possible worlds[27]. To complete 

the explanation of the Kt system, we proceed to 

describe the axiomatic system. 

2.1.2. AXIOMATIC SYSTEM 

Kt's axioms are from classical 

propositional logic. Frege-Russell Hilbert[20] built 

the first axiomatic systems. Ax0 contains The 

proposed axiomatic system is the CHURCH 

system for the classical logic of propositions. 

classical logic axioms: 

     Ax0,1: p → (q → p) 

    Ax0,2: (p → (q → r)) → ((p → q) → (p → r)) 

    Ax0,3: (¬q → ¬p) → (p → q) 

Below are the axioms that constitute the 

minimum system of temporal logic. This system 

was created by Lemmon in 1965 and is called 

Kt[26]. 
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Ax0: All the tautologies of the classical logic of 

propositions. 

Ax1: G(p → q) → (Gp → Gq)  

Ax2: H(p → q) → (Hp → Hq) 

Ax3: p → HFp 

 Ax4: p → GPp  

Ax5: Gq → GGq 

Ax1 and Ax2 show temporary operators' 

distributive properties. Ax1 says "p q always 

implies p always implies q in the future." Ax2 says 

"p q implies p implies q is always in the past" Ax3 

and Ax4 display time. Ax3 says "p implies that it 

is always been in the past that p" Ax4 says «p 

implies it will always be in the future that p was in 

the past. Ax5 shows the transitive property of time, 

it tells us "q implies that q implies that q implies 

that q implies". 

The rules that operate in the Kt system are 

the following: On the one hand, we have the 

uniform substitution rule that tells us that if ϕ is a 

theorem, then so is ϕ[ψ/q]. On the other hand, the 

modus ponens (MP) tells us that if ϕ and ϕ → ψ are 

theorems, then so is ψ. And finally, the temporal 

generalization tells us that if ϕ is a theorem, then so 

are Gϕ and Hϕ. In summary, the minimum system 

of temporal logic consists of a formal language 

LKt, whose novelty at the syntactic level is the 

introduction of new temporal operators F, P, G and 

H, and at the semantic level the introduction of a 

time flow T = (T, <). With this, we have finished 

the presentation of the Kt system. 

3. AUTOMATAS FINITOS (AF) 

If we postmodern any process, we would 

agree it has states and transitions. A state is an 

instantaneous description of a system that gives all 

the relevant information to determine how it can 

evolve from a given point. Transitions are 

variations of states over time that can be influenced 

by external inputs or occur spontaneously. In  the 

abstract, we assume transition states are 

instantaneous, but they usually take time. Starting 

an engine, computer circuits, traveling, elevators, 

Rubik's cubes, etc. are all examples of transition 

systems. A finite state transition  

 

 

system consists of finite states and transitions. A 

finite automaton [28] defines this abstraction. 

 

 

 

3.1 FINITE AUTOMATA BASICS (AF) 

Finite automata recognize symbol 

sequences. A symbol could be 0-1-2-2-a-b-c-F. 

Alphabet is represented by. The binary alphabet, 

where =0,1, is a good example. We can create 

symbols from the alphabet. With the binary 

alphabet, we can create 01101. Given the Latin 

alphabet, we could create a string etc. A string over 

is a list where each element is. Languages are finite 

or infinite strings. Temporal logic uses a finite set 

of symbols, but their combinations are infinite. A 

language is a finite or infinite set of strings, and an 

alphabet's symbols form strings. Formally, a finite 

automaton A has Q non-empty states. represents a 

finite alphabet. A function that specifies when an 

automaton changes states. Initial state q0 and 

accepting states F, where F Q [5] . 

Automaton A is defined by: 

Σ: Alphabet 

Q: Set of states 

q0 ∈ Q: Initial state 

δ : Q × Σ → Q: Transition function 

F ⊂ Q: Final state 

There are two types of deterministic finite 

automata (DFA) and non-deterministic (NDFA).   

To understand the formal definition of an 

automaton we will propose two examples that 

explain the two types of automaton, first, we will 

see the DFA and then the NDFA. 

3.2. DETERMINISTIC FINITE AUTOMATA 

(DFA) 

Automata are symbols-recognition 

machines. Graphs or sequence tables can represent 

these automata's transition functions. A 

deterministic finite automaton has one state for 

each input. We will explain a deterministic finite 

automaton's operation using its graphical 

representation. 

At first glance, we see a series of circles 

and arrows. We will say that the circles are the 

states of the automaton, and the arrows indicate the 

transitions of the automaton that allow us to go 

from one state to another and occur when the 

automaton receives certain symbols as input, in 

this case {0, 1}, these symbols constitute the 

alphabet Σ of the automaton. We can identify the 

set of states as Q = {q0, q1, q2}, where q0 

represents the initial state and where q2 the final 

state F or also called the acceptance state, 

graphically represented by a double circle. The 

transitions are represented by the arrows, and the 

direction of the arrows indicates the location of the 

next state. 

A transition function takes as input 

parameters a state and a symbol of the alphabet and 



 Bilal Abdullateef Kareem: The Influence of Temporal Logic on…..                                      235 

Al-Rafidain Engineering Journal (AREJ)                                             Vol.28, No.1, March 2023, pp. 230-238 

returns the following state δ : Q × Σ → Q. Next, we 

detail all the transition functions of the automaton. 

The state q0 has two possible functions: δ(q0, 1) = 

q0 and δ(q0, 0) = q1, the first one indicates that 

being in state q0, the symbol 1 is received as input, 

then it remains in state q0 , but if a 0 is received as 

input, then state q1 is passed. State q1 has two 

other possible functions: δ(q1, 0) = q1 and δ(q1, 1) 

= q2, the first one indicates that being in state q1, 

the symbol 0 is received as input, so it remains in 

state q1. state q1, but if a 1 is received as input then 

it goes to the acceptance state q2. In state q2, we 

finally have functions δ(q2, 0) = q2 and δ(q2, 1) = 

q2, which indicate that whether a 0 or a 1 is 

received, it will remain in the accepting state. If the 

automaton, responding to the input symbols, 

manages to reach the acceptance state, then the set 

of symbols or strings received is a valid formula 

for the automaton. In this example, valid strings are 

100101, 10010, 10011, 1001, 101, and 01. 

3.3. NON-DETERMINISTIC FINITE 

AUTOMATA (AFND) 

Use a graphic to explain non-deterministic finite 

automata (AFND).  

 

 

 

 

At first glance, we see that it is a finite 

automaton, whose states are q0, q1, q2 and whose 

alphabet Σ is made up of {0, 1}. So far, nothing 

different from the AFDs. However, we can notice 

that state q0 has two different responses to input 0; 

if a 0 is introduced as the first term of the chain, it 

can stay in state q0 or advance to state q1. Now the 

question is: How is an AFND able to recognize a 

string of symbols? The answer lies in the chain 

itself. The automaton considers the chain that it has 

to analyze and based on it, it will decide if it has to 

go one way or another. If the path takes us to a state 

whose transition function does not take us 

anywhere, then it is not a chain accepted by the 

automaton. To clarify the explanation let's consider 

chain 01. The first transition function tells us that 

δ(q0, 0) = {q0, q1}. This means that we have two 

options which we will call option a and option b, 

where a means to remain in state q0 and b means 

to advance to state q1. If we decide to consider 

option a, we will remain in state q0 and therefore, 

we have to examine the next symbol in the chain, 

in this case, 1. Being in q0, we have the function 

δ(q0, 1) = q0 which tells us that if we introduce a 1 

so we stay at q0. This shows us that option a does 

not lead to the state of acceptance. Let us, 

therefore, consider option b which tells us that we 

are in state q1 after receiving the symbol 0 as input. 

Well, the function δ(q1, 1) = q2, tells us that 

receiving the symbol 1 and being in state q1, leads 

us to the acceptance state q2. 

As we can see, the essence of AFNDs lies in their 

transition function, where before we had a single 

state to go to; and now, we have a set of states that 

we could go to in response to an input. 

Summarizing, an AFND is defined by an alphabet 

Σ, a nonempty finite set of states Q, an initial state 

q0, acceptance states F ⊂ Q, and the transition 

function δ = Σ × Q = P(Q), where P( Q) is the 

power set of a given set is another set formed by all 

the subsets of it. It is denoted P(Q) or 2Q. set of the 

non-empty finite set of states of the automaton. 

 

 

4. TEMPORAL LOGIC AND FINITE 

AUTOMATA 

So far, we have explained the foundations of both 

temporal logic and finite automata. In what 

follows, we will focus solely on their relationship, 

which is   a temporal logic model can be interpreted 

as an automaton that makes a formula true or false. 

Reviewing: a formula ϕ is true or is satisfied if it is 

true at some instant of time in some temporal 

model MKt = (T , ν), where T is a relational 

structure or flow of time and ν the transition 

function. The time flow T , in turn, is composed of 

a set of time instants T and a relation between the 

time instants <. Relational structures can also be 

interpreted as finite transition systems[29]. Since 

finite automata are finite transition systems defined 

by a quintuple A = {Σ, Q, q0, δ, F}, then we can 

construct an automaton that make  a temporal logic 

formula true or false. To illustrate the relationship 

we will proceed to build the automata for Gp and 

Fp. 

 

4.1. Finite Automata for Gp 

We will represent through a finite 

automaton the temporal logic formula Gp. The 

formal semantic definition is as follows: ν(Gp, t) = 

1 syss ∀s ∈ T(t < s → ν(p, s) = 1), and tells us that 

a Gp formula that is read as “will always be in the 

future that p", is true (ν(Gϕ, t) = 1) if and only if, 

for every moment s, which belongs to the non-

empty finite set of time instants T, t is prior to s 

then p at moment s is true.  
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The described automaton is an abstract 

representation of the behavior of the elements of 

the automaton are the states t0 and t1m where the 

first is the initial state and the second the 

acceptance state, both of which are part of the set 

of states Q. The automaton alphabet Σ is composed 

of the symbol {p} and the transition functions 

which are as follows: The instant t0 has a single 

transition δ(t0, p) = t1, the instant t1 has a single 

transition δ(t1, p) = t1. The strings p, pp, and ppp 

would be examples of strings leading to the 

acceptance time t1. The automaton allows us to see 

an acceptance pattern for Gp, where considering 

the variable, p, allows us to recognize sequences of 

the type: (m0), p (m1), p (m2), p, where (m0), ( 

m1), and (m2) are instants of time and, p the 

variables that we considered before. In this way, in 

short, Gp represented by the proposed automaton 

tells us that in an initial state p may or may not 

appear, but later, for the evaluation to be fulfilled, 

p must always appear. 

4.2. Finite Automaton for Fp 

We will represent through a finite 

automaton the temporal logic formula Fp 

«sometime in the future, it will be that p», whose 

semantic definition is given by ν(Fp, t) = 1 sys ∃s 

∈ T(t < s ∧ ν (p, s) = 1) and tells us that an Fp is 

true if and only if there exists a moment s 

belonging to T, the finite non-empty set of time 

instants, such that t is before s and p at moment s It 

is true. 

 

 

 

 

The described automaton is an abstract 

representation of the behavior of the formula Fp. 

The elements of the proposed automaton are two 

states t0 and t1, the first is the initial state and the 

second is the acceptance state, both belonging to 

the set Q of states of the automaton. The automaton 

alphabet Σ is composed of {p, q} and the transition 

functions are as follows: The state t0 has two 

transitions δ(t0, q) = t0 and δ(t0, p) = t1. The state 

t1 has two transitions δ(t1, p) = t1 and δ(t1, q) = t1. 

The strings p, qp, qpq, and qpp would be examples 

of strings that lead to the acceptance state t1. The 

automaton allows us to see an acceptance pattern 

for Fp, where considering two variables, p and q 

for example, allows us to recognize sequences of 

the type: (m0), q (m1), q (m2), p (m0), q ( m1), p 

(m2), q (m0), q (m1), q (m2), p where (m0), (m1), 

(m2), (m3), (m4) and (m5) are instants of time and, 

p and q, the variables that we considered before. In 

this way, summing up, Fp represented by the 

proposed automaton shows us that the temporal 

logic formula Fp is true if it responds to the pattern 

that indicates that p appears at least once in the 

sequence. 

5. Discussion and Positioning 

5.1. About Ax3 and Ax4, and Flow of Time 

The Kt system is said to be minimal 

because it does not have any assumptions about the 

nature of time, however, it does have elements 

worth discussing. We have chosen one of the many 

problems proposed by van Benthem, J. in Tense 

Logic and Time[9]. To explain it, we follow the 

line of argument of Müller, T. (2011) and then we 

relate the criticism to the thesis of this work. The 

topic is about   Ax3 and Ax4, and the flow of time. 

An axiomatic system is intended to reflect 

the most important features of a system. One of the 

determining elements of temporal logic is temporal 

flow.   Ax3 and Ax4 represent the time flow in the 

Kt axiomatic system. Ax3 : p → HF tells us that «p 

implies that it has always been in the past that it 

will be sometime in the future p» and Ax4 : p → 

GPp that «p implies that it will always be in the 

future that it once was in the past p». Considering 

Ax3, we see that p is true now; “it is that it has 

always been in the past that sometime in the future 

p” represents a very indeterminate idea of what is 

true now. That in reality in the past, it was already 

planned that p was going to be now anyway.  

Considering Ax4, we see that it expresses 

the idea that both the present and the past are fixed, 

«p is now true, if it has always been in the past that 

it will be sometime in the future that p. «If the 

operator of the future has as its mission to imitate 

the use of the future tense in natural language or to 

provide a basis for philosophical discussions about 

time, the symmetrical nature of the Ax3 and Ax4 

of Kt can be taken as inappropriate»[30]. 

Müller argues that we can show the 

formula is philosophically appropriate by 

assuming linear time and interpreting F as "it will 

be the case sometime in the future that." Once 

attention is limited to linear frames, the problem 

disappears, leaving only a chain of future 

moments. If both axioms had the same status, there 

would be no philosophical issue. Computer science 

studies linear frames for many applications. 

We experience time linearly[11] and 

assign dates, names, etc. to it, so this is the most 

studied model of time. This is just a concept of 

time, according to which we experience one 

moment at a time, remembering the unreflective 

property that no moment is before or after itself. 

No philosophical argument supports deterministic 

time flow. The logic of time must be open. 

The problem of elaborating   adequate 

semantics for the temporal operator was central to 

the pre-development of temporal logic. Consider 

Peirce's criticism of attempts to describe time 

algebraically or the problem of futures. Aristotle's 

army. Our work suggests that the future operators 
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of system Kt follow an evaluation pattern, but we 

must be cautious because this pattern can only be 

applied to the model of operators F and G whose 

time flow is based on instants and precedence 

relations. It does not say how a future operator will 

behave with interval-based or branched time. 

 

6. CONCLUSION AND FUTURE WORK  

The harmonious link that exists between 

automata and temporal logic is something to be 

admired. Both of these stories' twists in the 

storyline, as well as her fertile nature, speak for 

themselves. The development of temporal logic 

and automata theory hints at the existence of 

conceptual challenges that are the same from the 

beginning. The role of temporal logic as a technical 

language that gives exact notions and specifies 

communication is brought into focus with regard 

to this particular use of   logic. In this approach, 

temporal logic has resurrected a great deal of 

previously solved issues. We have examined the 

relationship between Logic and time throughout 

history, beginning with the Megaric-Stoics and 

ending with the simplest system of temporal logic.  

Our comprehension of temporal logic has 

significantly improved as a result. While 

everything was going on, we worked on automata 

theory, which included everything from Hilbert's 

Entscheidungs problem to formal grammar. The 

theory of automata uses logical language as a 

foundation   to improve conceptual analysis and 

issue tracking. 

The minimum temporal logic system Kt 

may be thought of as a formal language LKt that 

introduces additional temporal operators F, P, G, 

and H at the syntactic level and a flow of time T = 

(T, T,< ) at the semantic level. What sort of primal 

notions are acceptable, intervals or instants? Is 

only one example of the philosophical debates 

centered on this system's problematic conceptual 

machinery? Or rather, can we condense   periods 

into their constituent moments? Our investigation 

leads us to the conclusion that the Kt system 

possesses characteristics that may be either built 

upon or condemned. That in no way negates the 

inquiry, but rather prompts more thought and the 

generation of new issues; for example, is it possible 

to reconcile two logically distinct conceptions of 

time (intervals, instants)? 

The establishment of this connection 

between temporal logic and automata is made 

possible by the advent of finite automata. Because 

of their inherent abstract nature, automata allow us 

to understand the composition of a temporal logic 

formula. Connectivity between the F and G 

operator models was proven by developing 

automated representations of each. Given the 

suggested premise, we are compelled to pursue 

both of these lines of inquiry. Finding out if there 

is an automaton that verifies the models of past-

time operators would be the first step. Also, would 

the operators F, P, G, and H be sufficient to define 

a linear time sequence if we were to avoid the 

philosophical difficulty of the indeterminacy of the 

future operator? Alternately, might the need arise 

for the creation of novel, more evocative 

operators? Reasoning for these answers comes 

from theoretical computer science's potential use 

of temporal logic. Specifically, the operators:  , , 

, and U are new to linear temporal logic. As with 

the fundamental operators of Kt, they are read as 

"in the next state," "always," "eventually," and 

"until" and are understood in the same temporal 

frame. 
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   الملخص 
إذا كان من   Entscheidungsproblem تجمع نظرية الأوتوماتا أفكارًا من الهندسة ، واللغويات ، والرياضيات ، والفلسفة ، وما إلى ذلك. تسأل 

الرياضيات. الإنسان الآلي هو آلة مجردة تعالج البيانات. تعتبر نظرية جيم شانون الأكثر شيوعاً اليوم الممكن تصميم سلسلة من الخطوات التي تحل محل عالم  
لدينا أربعة  LKt  اسم "الحد الأدنى" لأنه لا يقدم أي افتراضات حول هيكل الوقت. وفي نظام Kt على الرغم من عدم وجود علاقة مع الأخرى. افترضنا  نظام

النظام المنطقي سوف ينجح  في المستقبل هو نفس    ان، والتي يمكن تعريفها بشكل متبادل. القابلية للتعريف تعني  H و H و G و P و Fعوامل مؤقتة أحادية ،  
الخطوة او    على أنه منطق فاشل في تحقيق الهدف المنشود لهذه  النظام  في  فقرة  او  خطوة  نجاحالمنطقي  ، وأن أفسر عدم    النظامالقول بأنني لن أفشل أبداً في  

عوامل اخرى مفترضة او مثبتة غير قابلة للاختلاف   خلالمن    ا المختارة خاصية تعريفه   للمعاملاتالفقرة . يقدم الحد الأدنى من بناء جملة النظام للمنطق الزمني  
. 

المنطق الشرطي دراسة المنطق التي تنطوي على استخدام التعبيرات "بالضرورة" و "ممكن".في هذه المقالة سوف نمثل من خلال صيغة منطقية 
 . qو  pمن خلال النظر في متغيرين    Fpيسمح لنا برؤية نمط قبول لـ   { ووظائف الانتقال كما يلي.p  ،qتتكون الأبجدية الآلية من } تلقائية محدودة. Fpوقت 

عن فكرة أن كل من الحاضر والماضي ثابتان ، إذا كان دائمًا في الماضي أنه سيكون في المستقبل  في بعض الوقت    Ktيعبر نظام الزمن البديهية لـ  
لمشاكل القديمة ،  الآن. لا توجد حجة فلسفية لدعم التدفق الزمني الحتمي. يجب أن يكون منطق الوقت مفتوحًا ، فقد أعاد المنطق الزمني إحياء العديد من ا  pأن  

يتبعون نمط تقييم ، ولكن يجب أن نكون   Ktالمستقبليين لنظام    المشغلين  العاملينرواقيون إلى نظام الحد الأدنى من المنطق الزمني. يشير عملنا إلى أن  -من ميغان
 حذرين لأن هذا النمط لا يمكن تطبيقه إلا على النماذج التي يعتمد تدفقها الزمني على اللحظات وعلاقات الأسبقية.
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