
Khalil: FPGA Implementation of Adaptive Noise Canceller

63

FPGA Implementation of Adaptive Noise Canceller

Rafid Ahmed Khalil Aws Hazim saber
 Department of Mechatronics Engineering Department of Electrical Engineering

College of Engineering, University of Mosul - Mosul, Iraq

Email: rafidamori@yahoo.com Email: aws_anaz@yahoo.com

Abstract
This paper presents hardware implementation of least mean square (LMS) adaptive

filter based Adaptive Noise Canceller (ANC) structure on FPGA using VHDL hardware
description language. First, the adaptive parameters are obtained by simulating ANC on
MATLAB. Second, the data, processed by FPGA, such as step size, input and output signals,
desired signal, and coefficients of ANC, are exactly expressed into fixed-point data
representation. Finally, the functions of FPGA-based system structure for such LMS
algorithm in time sequence are synthesized, simulated, and implemented on Xilinx
XC3S500E FPGA using Xilinx ISE 9.2i developing tool. The research results show that it is
feasible to implement, on chip train, and use adaptive LMS filter based ANC in a single
FPGA chip.
Keywords: Adaptive noise canceller, least mean square, FPGA, Adaptive FIR filter

,

(LMS)
(ANC)(FPGA)

VHDL.ANCANC
 MATLAB.

ANC.ANC
LMSXilinx XC3S500E FPGA

ISE9.2iXilinx.ANC
FPGA.

Received 29 April 2008 Accepted 3 Nov. 2008

mailto:rafidamori:@yahoo.com
mailto:aws_anaz:@yahoo.com

Al-Rafidain Engineering Vol.17 No.4 August 2009

64

I. Introduction
Adaptive filters, as part of digital signal systems, have been widely used in

communication industry, as well as in applications such as adaptive noise cancellation,
adaptive beam forming, and channel equalization [1]. However, its implementation takes a
great deal and becomes a very important field in digital system design. An adaptive filter is
usually implemented in DSP processors because of their capability of performing fast
floating-point arithmetic .But when FPGA (Field Programmable Logic Array) grows in area
and provides a lot of facilities to the designers, it becomes an important competitor in the
signal processing market. In addition, FPGA is a form of programmable logic, which offers
flexibility for repetitive reconfiguration. Since FPGA consists of slices organized as array of
rows and columns, a great deal of parallelism can be explored. Although it is not efficient to
use floating-point arithmetic in FPGA due to its need for a large area ,it is sufficient to use
fixed-point arithmetic for the adaptive filter to work well [3]. In general FIR structure has
been used more successfully than IIR structure in adaptive filters [4]. The output FIR filters is
the convolution of its input with its coefficients which have constant values. However, when
the adaptive FIR filter was made this required appropriate algorithm to update the filter’s
coefficients [5].The algorithm used to update the filter coefficient is the Least Mean Square
(LMS) algorithm which is known for its simplification, low computational complexity, and
better performance in different running environments [6]. When compared to other algorithms
used for implementing adaptive filters the LMS algorithm is seen to perform very well in
terms of the number of iterations required for convergence. Recursive Least Squares
algorithm, for example, is faster in convergence than the LMS but is then very complex to
implement, hence detaining system performance in terms of speed and FPGA area used [7]. In
order to use fixed-point arithmetic in adaptive FIR filters , the stalling phenomenon which
may arise from fixed-point adaptation process should be avoided. This phenomenon can be
achieved by a sufficient choice of bit length to represent the filter’s coefficients [8].

This paper is organized as follows. Section II discusses the theory of adaptive FIR filters and
adaptive noise canceller as well as the LMS algorithm. In section III the description of the
implementation is given while section IV displays the results obtained. Finally section V
gives the conclusions arrived at the results obtained.

II. Background Theory
A. Adaptive Filters
A filter is a device that maps its input signal to another output signal facilitating the extraction
of the desired information contained in the input signal. Time-invariant filters have fixed
internal parameters and structure. When specifications are given, the filter’s transfer function
and the structure defining the algorithm are fixed. An adaptive filter is time-varying since
their parameters are continually changing in order to meet certain performance requirements.
Usually the definition of the performance criterion requires the existence of a reference signal,
which is absent in time-invariant filters. The general setup of an adaptive filtering
environment is shown in Figure 1, where n is the iteration index, x(n) denotes the input signal,
y(n) is the adaptive filter’s output signal, and d(n) defines the reference or desired signal. The
error signal e (n) is the difference between the desired d (n) and filter output y (n). The error
signal is used as a feedback to the adaptation algorithm in order to determine the appropriate
updating of the filter’s coefficients. The minimization objective is for the adaptive filter’s
output signal matching the desired signal in some sense [7].

Khalil: FPGA Implementation of Adaptive Noise Canceller

65

B. Adaptive noise cancellation
One of the adaptive filter applications is the adaptive noise canceller. Figure 2 describes

its structure where the desired response is composed of a signal plus noise, which is
uncorrelated with the signal. The filter input is a sequence of noise which is correlated with
the noise in the desired signal. By using the LMS algorithm inside the adaptive filter, the error
term e (n) produced by this system is then the original signal with the noise signal cancelled
[9].

Figure 2 . Block diagram of adaptive noise cancellation

C. LMS algorithm
LMS is the most widely used algorithm. The key feature of the LMS algorithm is its
simplicity. It requires neither measurement of the correlation function, nor matrix inversion
[4] .It uses Mean Square Error (MSE) as a criterion. LMS uses a step-size parameter, input
signal and the difference of desired signal and filter output signal to frequently calculate the
update of the filter coefficients set [3].

1) LMS Equation: The simplest estimation may use only the current available taps and
the current desired response to estimate the autocorrelation matrix and the cross-correlation
vector. The equation to adapt tap weights w(n) using the instantaneous taps x(n) and desired
response d(n) is [1]:

w(n+1) = w(n) + x(n)[d(n) – x(n)w(n)] (1)

where is the step size, since the filter output is the convolution sum of the taps and tap
weights

y (n) = x (n)w (n) (2)
and the estimated error signal e (n) is defined as the difference between the desired response
and the filter response, or

Digital
Filter

LMS
Algorithm

+
-x (n) y (n)

d (n)

e (n)

Primary
sensor

Reference
sensor

Noise
Source

Signal
Source

Digital
Filter

Adaptive
Algorithm

+
-x (n) y (n)

d (n)

e (n)

Figure 1 . Conventional Adaptive Filter Configuration

Al-Rafidain Engineering Vol.17 No.4 August 2009

66

e (n) = d (n) – y (n) (3)

So, Eq. (1) can be rewritten in terms of the error signal and the taps:

w (n+1) = w (n) + x (n) e (n) (4)

Eq. (4) is the formula for the LMS algorithm [5]. As illustrated in the equation, each tap
weight adaptation at each time interval requires merely the knowledge of the current taps and
the current error signal, which is produced with the knowledge of the desired response. The
algorithm does not require any prior knowledge of the entire autocorrelation matrix or the
cross-correlation vector, nor does it require matrix computations.
2) The Convergence boundary: The convergence time of the LMS algorithm depends on
the step size . If is small, then it may take a long convergence time and this may defeat the
purpose of using an LMS filter. However if is too large, the algorithm may never converge.
LMS algorithm can be shown to converge for values of less than the reciprocal of the
largest eigenvalue of the autocorrelation matrix of x(n), but it may be time varying, and to
avoid computing it another criterion can be used [7]:

 (5)
where L is the number of filter taps and E[] represent the expected value of x2(n). The value
of should be scientifically computed on the basis of the effects of the environment [7].
3) Selection of Adaptive Parameters: The choice of the step-size parameter and the order
of the filter effectively determines the performance of LMS [3]. From Eq.(5) the range of is
known but how can the value of be exactly chosen and how can the number of filter’ taps
be chosen? when the filter taps are increased, this improves the convergent performance of
LMS algorithm, but every tap (in structure of LMS adaptive filter) costs two more multipliers
and two more adders ,as seen in Figure 3. However, this will increase the area needed and
decrease the maximum frequency of the design. So, balance is required between the
convergent performance and the amount of hardware used effectively. Unfortunately, there is
no clear mathematical analysis to derive the exact quantities. Only through experiments may a
reasonable solution be obtained [3]. In order to select appropriate step size and filter order,
MATLAB simulation of LMS algorithm is carried out. Based on the simulation results (which
will be discussed later), the adaptive parameters obtained will be applied to the hardware
implementation process of LMS algorithm.

III. Implementation
A. The Spartan-3E FPGA
The FPGA used to implement the adaptive filter is a 500,000-gate Xilinx Spartan-3E
XC3S500E in a 320-ball Fine-Pitch Ball Grid Array package (XC3S500EFG320). Spartan-3E
devices contain a two-dimensional row and column based architecture to implement custom
logic. Its architecture consists of five fundamental programmable functional elements[10]:

Input/output Blocks (IOBs)
Configurable Logic Block (CLB) and Slice Resources
Block RAM
Dedicated Multipliers
Digital Clock Managers (DCMs)

Khalil: FPGA Implementation of Adaptive Noise Canceller

67

The Spartan-3E family features a rich network of traces that interconnect all five
functional elements. Each functional element has an associated switch matrix that permits
multiple connections to the routing [10]. Amongst the different architectures available for
implementation, post testing results shows that direct convolution provided the fastest and
least area consuming algorithm [7]. Testing showed that when the design is implemented in a
modular approach, all the blocks are implemented as separate modules on the FPGA. The
design is expensive in slice and flip-flop usage because of the additional components used in
connecting the separate blocks together. This also results in increased data signal paths which
carry with them increased delays and therefore lower the maximum possible frequency of the
system operation. Therefore, in the optimization stage of the design the separate modules are
combined together into one module using a single global clock [7].

B. Adaptive FIR filter Structural
The LMS algorithm uses an FIR filter structure. The design shown in Figure 3 represents a

structural view of the filter. From the figure, the main components of the filter consist of L-1
Unit Delay Registers and L Weight Updates. The Unit Delay Registers are simply D Flip-
Flops. Each Weight Update component consists of a multiplier, an adder and a buffer to store
the new weights’ update of the filter coefficient. According to equation (4) the filter output is
subtracted from the desired signal to produce an error signal. The error signal is then
multiplied with and then with the input signal, which produces next sets of filter
coefficients.

C. FPGA Implementation of LMS Algorithm
1) Processing of positive and negative number: In FPGA, the data, such as the input
signals, the coefficients of filter, and the desired signal, may be positive or negative. So it is
necessary to use signed numbers for expressing all the data inside FPGA. Based on the
expression method of the signed number, the MSB bit is used as a sign bit. For the MSB bit,
binary digit ‘0’ denotes a positive number, binary digit ‘1’ expresses a negative number, and
all the data are denoted by the 2’s complement.
2) Fixed-point representation of Data: Fixed point is a step between integer mathematics
and floating-point. This has the advantage of being almost as fast as integer arithmetic, and
able to represent numbers with fraction. It uses a smaller area in FPGA than floating-point to
process the arithmetic operations. A fixed-point number has an assigned width and an
assigned location for the decimal point. As long as the number is big enough to provide

µ

Delay

_

Delay

×
+ Delay Delay Delay

X(n) X(n-L+1)X(n-1)

w(L-1)w(1)w(0)

w(0) w(1) w(L-1)

d(n)

y(n) +……

…

× ×
×

×××

+ +

++

Figure 3 . Structural view of FIR Filter using LMS Algorithm

Al-Rafidain Engineering Vol.17 No.4 August 2009

68

enough precision, fixed point is fine for most DSP applications. Because it is based on integer
math, it is extremely efficient as long as the data does not vary too much in magnitude.
 The most essential task is the right selection of word lengths for the various variables in the
system. Short word lengths may result in extra round-off errors, which can cause instability or
poor performance. On the other hand, the use of excessively long word lengths increases
system complexity which in turn reduces its maximum speed and increases the used area of
the FPGA. So balance should be achieved between the system round-off errors and the
maximum speed of operation together with the used area of the FPGA [8].
In order to select a sufficient word length and a range for the various variables in the system,
we should design the proposed adaptive FIR filter according to the application (adaptive noise
canceller) . So, a MATLAB simulation model of fixed-point adaptive noise canceller is used
in order to get the variables’ representation with minimum possible word length and sufficient
partitioning between integer part and decimal fraction, which results from model tests with
varying word lengths and decimal fractions [6]. A bad choice of a decimal fraction produces
more quantization noise. Table 1 shows the numerical ranges of the input signals, the output
signal, and the coefficients obtained by simulation. Based on the ranges obtained , the
locations of the bits for the integer parts and those for the decimal fractions of each variable
are obtained.

For the input signal x range from -2 to 2 , its whole scale may use 2-bit, so the decimal
fraction is located between the 9th bit and the 1st bit. According to this location method, the
best precision can be obtained within the given dynamic range. Similarly, the decimal fraction
of desired signal d is also located between the 9th bit and the 1st bit. So for other variables
(such as y(n) and e(n)), the same location method is used. The selected number system is
shown in Tables 2 and 3.

In selecting a proper word length for the fixed-point representation of the adaptive FIR filter
tap weights, the stalling phenomenon is prevented. The stalling phenomenon comes from the
bad selection of the fixed-point representation, the number of bits for the integer and that for
the decimal fraction and the total word length (Figure 4 shows the simulation in ISE9.2i after
implementation of adaptive FIR filter with the effect of stalling phenomenon when 8 bits is
chosen as a word length). This means that the error signal does not approach the original

Table 2. Data format of x ,d & e

12 11 10 9 8 7 6 5 4 3 2 1

Sign Integer Decimal fraction

TABLE 1 . Numerical Ranges Of Variable

Variable name x d e w

Data range (-2,2) (-2,2) (-1,1) (-0.2,0.2)

Table 3. Data format of y

24 23 22 21 20 19 18 … 13 12 11 … 1

Sign Integer Decimal fraction Truncation

Khalil: FPGA Implementation of Adaptive Noise Canceller

69

signal and the adaptive filter’s output will be unstable although the design will have smaller
area and more speed as compared with the proposed design. The instability of the system
happened when the weights passed the maximum number (in 8 bit representation with 2’s
complement is 127) at the adaptation time, which will cause the stalling phenomenon.
Another source of this phenomenon comes from the small value of x (n) e (n) so that the
adaptation will be stopped[1].

So from the MATLAB simulation test of the proposed adaptive filter, the proper selection of
adaptive filter weights for fixed-point representation is as shown in Table 4.
3) Step Size Selection Arithmetic: The step size parameter is a decimal number, and

multiplying a decimal number is equivalent to dividing its reciprocal. However, in order to
avoid division and multiplication operations for their consuming in maximum frequency and
area for the design, Arithmetic Shift Right (ASR) operation is used instead of the division
operation in order to increase the maximum frequency of the design and decrease its
consumed area. The ASR operation on a 2’s complement integer shifts the number n bits to
the right (the direction of the least significant bit), while preserving the sign bit (the most
significant bit). Shifting the number n bits to the right is equivalent to multiplying this number
by . Therefore, in order to achieve simplicity and feasibility, this design restricts the value
of to be = , where n is a positive integer. From the MATLAB simulation test of the
proposed design, equals 0 .004. ASR operation can provide us with which is equal to
0.0039. So it seems that ASR is a very good choice for the proposed design.

IV. Testing And Results
The fixed-point LMS based adaptive filter was first tested using MATLAB simulation. Figure
5 shows the MATLAB model of fixed-point LMS based ANC, where the system shown in
Figure 3 was implemented in software. Figure 6 shows the results obtained from Figure 5,
confirming that the adaptive filter used performs well in obtaining the original signal from a

Table 4. Data format of w
12 11 10 9 8 7 6 5 4 3 2 1

Sign Integer Decimal fraction

Figure 4 . Stalling phenomenon effect on adaptive FIR filter

Al-Rafidain Engineering Vol.17 No.4 August 2009

70

‘noisy’ version and gets peak signal to noise ratio improvement of 13.02 dB. From this model
test, the minimum number of taps needed to get an acceptable filtered signal is 30 taps with a
step size equal to 0.004 at word length and range as chosen before for implementation.
The hardware description language VHDL and FPGA are used to compile the source program
of LMS algorithm. XC3S500E chip of Spartan-3E family from XILINX Corporation is
selected, and the design is synthesized and simulated on ISE 9.2i. The simulation results after
implementation of the fixed-point LMS based adaptive filter on FPGA are shown in Figure 7.
In Figure 7, x_in and d_in represent the inputs to the adaptive filter and the desired signal.
From Figure 7 it is clear that the output signal is gradually stable after a period of time (time
of convergence) and is close to the desired signal.f0_out & f1_out represent the first two
coefficients in order to show what happened in the coefficient. This result denotes that the
design can satisfy the desired demand and carry out adaptive process (the same method used
in [1,6] to prove that the design achieves the adaptive process).

Device utilization summary:
Selected Device: 3s500efg320-4
Before map operation
Number of Slices: 4683 out of 4656 100%
After map operation
Number of Slices: 4654 out of 4656 99%
 Number of Slice Flip Flops: 1560 out of 9312 16%
 Number of 4 input LUTs: 8879 out of 9312 95%
 Number of bonded IOBs: 100 out of 232 43%
 Number of MULT18X18SIOs: 20 out of 20 100%
 Number of GCLKs: 1 out of 24 4%

Timing Summary:
Speed Grade: -4
Minimum period: 37.164ns (Max. Frequency: 26.908MHz)
Minimum input arrival time before clock: 16.466ns
Maximum output required time after clock: 28.857ns

weight

w

output

out
mu

0.004

Filtered
Signal

Original
Signal

Noisy
Signal

Scope

Reset

1
Original Signal

y_org

0

Noisy Signal

y_noisy

Noise source

Noise Only

y_noiseonly

LMS Adaptive Filter

LMS

Input

Desired

Step -size

ResetReset

Output

Error

Wts

1/z
1/z

1/z

Gain

-K-

Filtered Signal

y_filtered

Digital Filter

Digital
FilterNum

In
Out

Conversion .

Convert
(SI)

Conversion

Convert

Bandpass

fir1(39 ,[.3 .5])

 audio signal source

16 ((2^15)*(wavread ('aws.wav

Figure 5 . MATLAB model of fixed-point LMS based ANC

Khalil: FPGA Implementation of Adaptive Noise Canceller

71

Figure 6 . Test Results obtained using MATLAB simulation

V. Conclusion
The implementation of a fixed-point based adaptive FIR filter in a Spartan-3E device has been
presented. The implementation is based on the design shown in Figure 5. The system worked
as expected and the noise was cancelled out by the developed adaptive filter without any loss
of data due to the bad selection of range or word length. The word-length requirement of
various modules in the design has been discussed. It is found that although a relatively long
word length should be used for the filter tap-weights to prevent the stalling phenomenon, the
actual tap-weight bits, which should be used to calculate the filter output, can be many bits
less.

Figure 7 . Simulation result of the fixed-point LMS based adaptive FIR filter
implementation on FPGA

Al-Rafidain Engineering Vol.17 No.4 August 2009

72

References
[1] Simon Haykin, “Adaptive filter theory”, Third edition, Prentice Hall, 2002.
[2] A. Elhossini, S. Areibi and R. Dony, “An FPGA implementation of the LMS adaptive

Filter for audio processing,” In Proceedings of IEEE International Conference on
Reconfigurable Computing and FPGAs 2006 (RECONF'06), pp. 1–8, September
2006.

[3] A. Y. Lin, K. S. Gugel, and J. C. Principe, “Feasibility of fixed-point transversal
adaptive filters in FPGA devices with embedded DSP blocks,” In Proceedings of the
3rd IEEE International Workshop on System-on-Chip for Real-Time Applications
2003, pp. 157–160, 30 June-2 July 2003.

[4] U. Meyer Baese, “Digital Signal Processing with Field Programmable Gate Arrays”,
Springer, 2006.

[5] B. Widrow and S. D. Steams, “Adaptive Signal Processing”. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

[6] G. Yecai, H. Longqing, and Z. Yanping, “Design and implementation of adaptive
equalizer based on FPGA,” In Proceedings of IEEE 8th International Conference on
Electronic Measurement and Instruments 2007 (ICEMI’07), pp. 4-790 – 4-794,
August 16 2007-July 18 2007.

[7] M. Vella, and C. J. Debono, “The implementation of a high speed adaptive FIR filter
on a field programmable gate array,” In Proceedings of IEEE Electrotechnical
Conference 2006 (MELECON'06), May 16-19, Benalmadena (Malaga), Spain, pp.
113–116, 16-19 May 2006.

[8] W. C. Chew, and B. Farhang-Boroujeny, “FPGA implementation of acoustic echo
cancelling,” In Proceedings of the IEEE Region 10 Conference 1999 (TENCON’99),
Vol. 1, pp. 263–266, 15-17 September 1999.

[9] Woon-Seng Gan, Sen M. Kuo, Embedded Signal Processing with the Micro Signal
Architecture, Wiley, 2007

[10] Xilinx, “Spartan-3E FPGA Family Complete Data Sheet”, Data Sheet DS312, Xilinx,
Inc.,2005.

The work was carried out at the college of Engg. University of Mosul

