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Abstract

This paper describes a new proposed architecture for tolerating faults in hypercube
multiprocessor DSP system. The architecture considered employs the TMS320C40 DSP
processors as processing node. The system has a single spare DSP processor assigned to each
cluster ( a group of four nodes ). Each pair of clusters share one FPGA unit connected to every
node in the two clusters plus the two spare processors. The FPGA units in the system are devoted
for data routing, data distributing (in real time processing), diagnosis, system reconfiguration and
expanding. Every 3D hypercube has additional spare processors connected to FPGA device of
that cube. The spare nodes are used in two stages to tolerate more than one faulty node in each
cluster with a low overhead and minimum performance degradation. The system makes use 50%
hardware redundancy in the form of spare nodes to achieve fault tolerance. The effectiveness of
interprocessor communications and the mechanism of fault detection( for one and two fault ) has
been successively simulated using (Xilinx Foundation F2.11) simulator.
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1. INTRODUCTION

A hypercube multiprocessor systems have several interesting features which make them
useful and popular as a general purpose multiprocessor system[1]. However, dependability and,
in particular, reliability are important aspects in the designs of hypercube system and other
complex parallel computing systems used for a wide range of applications in science, industry,
and engineering. These aspects achieved by fault tolerance that incorporates mechanisms in the
design of such systems to detect and localize errors as well as mechanisms to reconfigure the
system and to recover from erroneous states.

In a fault tolerance multiprocessor system designs, the common method to obtain continuous
execution and sustain the same level of performance in the presence of faults is to use spare nodes
and/or spare links to replace the faulty ones[2,3]. Over the past 20 years, a number of fault-
tolerant designs for hypercube multiprocessor systems have been proposed. Banerjee et. al. [4]
used spare nodes and spare links to perform system reconfiguration. In his scheme, two spares are
assigned to each 3-dimensinal cube and the spare processors form a (d-2) cube. Upon a node
failure, the faulty node is replaced with the local spare. The link connecting the spare to the
faulty processor and the link connecting it to the node diagonally opposite to faulty node is
disabled. The system can only tolerate a single node failure.

Alam et. al.[5,6] have proposed two schemes to tolerate faulty nodes: in the first one; a
single spare node is added to each cluster of four nodes. If one of the four nodes fails the spare
replaces it and inherits its address. Therefore only one fault can be handled per cluster. In the
second scheme, four spare nodes are added to each pair of clusters ( eight regular nodes) which
allows to handle two faulty nodes in each cluster. However, a more complicated routing
algorithm is needed. Q. Mohmmad [7], proposed an adaptive fault tolerant routing algorithm to
route a message around the faulty node in a connected tree-hypercube system instead of using
spare nodes to achieve the fault tolerant design. To enable any non faulty node to communicate
with any other non faulty node, the information on component failures has to be made available
to non faulty nodes to rout message around the faulty nodes. In his scheme to route a message in
presence of the fault, each node needs to know the condition of its own links only.

In this paper, we present a new fault tolerant n-dimensional hypercube multiprocessor system
architecture for DSP applications. The system uses TMS320C40 DSP processor as a processing
node and the FPGA devices to achieve the expandability and the reconfigurability of the system
and to implement other tasks. The system employs the spare nodes to tolerate more than one
fault in the processing nodes with minimum communication overhead. The proposed system uses
the FPGA technology instead of the old techniques that are used in design of other fault tolerant
multiprocessor systems such as switching network [14], replacement circuits, or graph-based
bypass connection [15].

Most of these old techniques involve incorporating large number of external switches,
control processor or complicated control circuit to detect and locate errors, reconfigure the system
and recover from error.

The rest of this paper is organized as follows: In the next section an overview of the proposed
architecture is presented. In section 3 we explain the mechanism of fault detection and
reconfigurability of the system. The routing scheme and the general consideration in the design of
the FPGA unit are described in section 4. In section 5 we present a simulation using VHDL
language and (Xilinx Foundation F2.1i ) simulator for inter processor communication and fault
tolerance mechanism in our proposed system. Finally, system performance and concluding
remarks are discussed in section 6.
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2. SYSTEM ARCHITECTURE

Two general approaches can be used in design of the fault tolerance in hypercube
multiprocessor system. The first approach looks into ways of employing the healthy processors
and links of the hypercube with faulty nodes, to identify embedded topologies such as lower
dimension hypercube ( subcubes ), meshes, ..etc. required by the computations. With this
approach, some performance degradation is expected, however special hardware design for fault
tolerance is not necessary. Once the faulty processors are identified, the hypercube
multiprocessor and the algorithm running on the system must be reconfigured to run on the
available processor.

The second approach makes use of hardware redundancy in the form of spare nodes and/or
links to tolerate faults and usually requires modifications in the communication hardware.
However, the algorithm running in the hypercube with the faulty node need not be modified. Also
in this approach, almost no performance degradation occurs. The second approach is adopted in
our proposed system.

In our design, a single spare node is added to each cluster of four regular nodes. Figure 1
shows a 3 dimensional hypercube with two clusters each is a sub cube of dimension 2. In
general, the hypercube of dimension (n) can be divided into 2 clusters and each cluster is a
cube of dimension (2).

The proposed scheme employs the FPGA devices to enable the spare node to communicate
with the neighboring nodes through the I/O port of the FPGA. The spare node then
forwards/receives its data to/from other neighboring nodes via its communication ports and the
FPGA 1/O ports.

o Regular node (RN)

25P0 25PI
@p Firststage spare 25PQ
node (1SP) (‘{f%}i{)
& Second stage spare FPGA

node (2SP)

000 001
Figure 1 Proposed architecture of 3-dimensional (3D) fault tolerant hypercube system

Upon detecting a node failure, the spare node within the respective cluster logically
replaces the faulty nodes and takes its address. When the processor fails in a cluster, the spare
replaces it must be able to communicate with the neighboring processors in the local 3D cube as
well as with the neighboring nodes in the extended hypercube. Therefore, it has to be linked to
the neighboring processors in its local 3D hypercube as well as with the other adjacent nodes in
the extended hypercube using FPGA units. For example, in figure 1, the spare 1SP0 may
logically replace any one of the four nodes 000, 001, 010, or O011. If the faulty node is , for
example, 001 then the spare 1SPO replace it and take its address. In this case, 1SP0 communicates
directly with the regular nodes 000 and 011. While it communicates indirectly with the node 101
through the FPGA 1/0O ports.

To tolerate multiple faults within the cluster, two additional spare nodes are added to each 3D
hypercube and connected through the FPGA unit as shown in figure 1. In other words, the spare
nodes in every 3 dimensional hypercube are used in two stages to handle multiple faults: at stage
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one, the local spare node connected in each cluster ( first stage spare node; 1SP) replaces any
faulty node in that cluster. At stage two, if a fault occurs in any node of the same cluster, then one
of the spares (second stage spare nodes; 2SP) connected to the FPGA with that 3D hypercube is
used to replace the faulty one.

In this architecture we suggest to use the TMS320C40 DSP processors as a processing nodes
which is the 4™ generation DSP processor produced by Texas Instruments[8]. The TMS320C40s
are dedicated to computing intensive task while the FPGA in every 3D cube is responsible, in
addition to the data routing, for system expanding, reconfiguration in case of the node failure,
system monitoring and real-time IO. The six built-in communication ports of the TMS320C40 are
used to link the DSP processor to its adjacent-regular DSP nodes, to spare nodes and to the FPGA
devices. Using TMS320C40, the processor and the communication port are integrated in one unit
( not separated ), therefore failure in the processor meaning failure in the communication
channels that connect that processor to its adjacent nodes.

The present scheme can tolerate four faults in every 3D cube with a small performance
degradation, due to communication overhead caused by the routing through the FPGA units, and
the mechanism of fault detection as described next. The resultant configuration does not affect
either the communication or computation algorithm already developed for the hypercube
multiprocessor system. Figure 2 illustrate the architecture of 4 dimensional fault tolerance

hypercube system.
Hypercube-0 Hypercube-1

0000 0001
Figure2  4-dimensional fault tolerant hypercube system

In this architecture, the adjacent nodes to node 0000, for example, are 0001, 0010, 0100 and

through the I/O communication ports of FPGAO and FPGAl with the node 1000. The 5

dimensional hypercube system is constructed by connecting four 3 dimensional hypercubes as

shown in figure 3. The FPGA units are also connected to form a cube in their own as shown in

figure 5. However, in this architecture, to design n-dimensional extended hypercube we need
2 FPGA devices.

2D cube

b
Hypercube-3

3D
Hypercube-2

3D
Hypercube-0

3D
Hypercube-1

Figure 3 S dimensional fault tolerant extended Hypercube system
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3. MECHANISM OF FAULT DETECTION

The effective integration of fault tolerance into massively parallel systems requires a proper
and cost effective combination of different error detection mechanisms. These mechanisms can
be grouped into the following three techniques according to the level on which they are applied:

* Self-checking techniques in each processing node
* Central checking techniques for entire clusters of processing nodes
* Distributed system-wide checking techniques by mutual tests between nodes.

In the first techniques, the main emphasis focuses on the reliability of the computing core, as

the most intensively utilized resource [9]. However, the basic checks integrated onto the chips
alone proved insufficient for the construction of a reliable multiprocessor.
One of the important methods for checking the computing core is the Watchdog processors
[10,11]. A watchdog processor is a coprocessor concurrently monitoring the program control
flow either by observing the instruction fetch on the CPU bus or by checking symbolic labels
explicitly sent from the main program. However, This solution to be cost effective, large
multiprocessor should be based on sharing of the additional hardware between clusters of
processing nodes. So the relative overhead per node can be kept low.

Another means to detect faulty nodes is given by mutual tests between nodes. The most widely
used technique is based on the system-wide exchange of <I’'m alive> messages (or heartbeat).
This technique had first been implemented into the fault tolerant multiprocessors of Tandem [6].

In our proposed system and with every local 3D hypercube, the mechanism of error
detection depends on using central checking technique represented by the diagnosis algorithm
running in the FPGA and based on <I’m alive> mechanism. However, with respect to overall
system ( extended hypercube ), the mechanism of fault detection can be regarded as a distributed
checking mechanism. Since, every FPGA monitors the activity of their processors in a 3
dimensional hypercube connecting with it. Each processor must send <I’m alive> message to the
local FPGA continuously every constant period of time. If the FPGA does not receive this
message from any of the 3D hypercube processors within the predetermine time interval, then
that processor is considered to be fail.

After the FPGA has detected the fault, it raises an interrupt to all the processor nodes in the
system to go back one processing step and wait to reconfigure the hypercube to isolate the faulty
node and replacing it with one of the spare nodes. After the system reconfiguration, the FPGA
detecting the fault issues a FAIL message to all nodes in the 3 dimensional hypercube identifying
which processor has failed. This message also propagates to all FPGA units in the system. And
through each FPGA, the FAIL message propagates to every processor in its local 3 dimensional
hypercube. The fail message contains information about the address of the faulty node and the
address of the spare node replacing it. After reconfiguration, all the processors resume the
processing from the stage prior the occurrence of the fault.

Every processor keep a record of the useful work performed in each period of time and in
case of a processing node failure, after reconfiguration they are rolled back to a predetermined
state. This predetermined state can be the point of receiving last <I’m alive> message. The
spare node should containing a backup copy of the tasks running in each regular processor in the
hypercube, therefore the computation module of spare node logically can replaces the
computation module of faulty node.
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4. ROUTING SCHEME AND FPGA CONFIGURATION

Efficient routing of message is a key to the performance of fault tolerance multiprocessor
system and this is achieved by allowing fast reconfiguration in the present of the fault. Therefore
the spare replacement of faulty components should result a very few changes in the system
interconnections. To achieve this goal, each faulty processor should be replaced with the local
spare as possible. In our proposed system, in order to enable non faulty nodes in a faulty
hypercube to communicate with the spare node, it is required that each node to know only the
conditions of adjacent nodes and the address of the spare node replacing the faulty node for
making the correct routing path.

The FPGA provide a hardware environment in which physical logic and routing resources
can be reprogrammed by configuring the device in order to perform a specific function. As a
result, they provide an ideal template for dynamic circuit specialization and logic reconfiguration.
The most important benefit of using the FPGA is significant reduction of the design effort
compared to system specific interconnection network. FPGAs as Altera Stratix 1S40 offer
excellent platform for system on chips that can implement Intellectual property (IP) components
as processor, hardware accelerators, memories, and communication interface...etc. The FPGA
used in this system consisting of four Intellectual property (IP) blocks as shown in figure (4 ).

GED G QD D D @D
==

o, o ~
¢ To other

'\ FPGAs /< CSN
- ?- \ F 3
Interrupt v r.m

requeststo [ [ N <I'malive>
D%Pt and {1= ISU H SDU . | messages from
-] . - :
SPs devices L \ i DSPs and SPs

devices

v

Figure 4 Architecture of the FPGA device in the proposed system

These components are: control circuit for system diagnosis (system diagnosis unit - SDU)),
Interrupt sending unit (ISU), crossbar switching network (CSN) and the memory unit (MU). The
SDU is a control circuit responsible for overall control of the FPGA components. It can receive
the <I'm alive> messages from the DSP processors sequentially. If one processor fails, then the
SDU reconfigure the CSN to isolate the faulty processor and rearrange the interconnections
between the processors to incorporate the appropriate spare processor. The CSN is a crossbar
switching network connecting the 8-bit input/output bus of all the processors in 3D hypercube
and the 1% and 2" stage spares together. Also it connects the FPGA units in a hypercube
network. In case of a failure, the configuration of the CSN can be done during the runtime. The
memory unit is used to store the bit stream required to configure the CSN and all FPGAs in the
system share the same configuration bit stream. Figure ( 5 ) shows the arrangement of the
communication ports of the processors and the FPGA unit in the 3D hypercube through the CSN.
Also the figure illustrates examples of configuration the crossbar switching network (CSN) in
FPGAO upon the failures in one, two three or four DSP processors.
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Table 1 illustrates the required replacement and connection between the regular and
spare nodes upon failure in one, two, three, and four DSP failures based on the examples that are
given in figure 5 .

/CSNin ™,

D Ogn N = D0 OONN = = o
/ L M Ry CSN in B I R R R R N
i i avBilgvMiavEigo]
FreAdT 2R E3=S=sSg FPGAO( 2R E3ES=ESg
0000009 SS 66666??66
DSP0 @ A DSP0 @& %;L
DSP3 e 2N DSP3 e
DSP5 @ A DSP5S @ %
DSP6 () A1-H DSP6 [2)
1SPO e o) 1SPO e 3
1SP1 o—+b 1SP1 e 5
2SP0 o A N 2SP0 o o+
2SP1 = Y N/ 2SP1 = Lo !
FPGAl - T T FPGA1l -
9 A4

Figure 5 Configuration of the crossbar switching network (CSN) in FPGAOQ upon :
a) one or three DSP failures b) two or four DSP failures

Where the following symbols are denoted to the connection through the crossbar switch if the failure( for example ) in :
O pseo < pspr O3 pspo and DsP4 V' DSsP0 and DSP3 O Dsp2, DSP5 and DSP6
A\ DSPI, DSP2 and DSP3 X DSP1, DSP2, DSP4 and DSPS

Table 1 Replacement and connection between the regular and spare nodes upon failure in
DSP processors based on the examples that are given in figure S .

Faulty node(s) Replaced nodes Required connections through the FPGA
DSPO 1SPO replace DSPO DSP4 with 1SPO
DSP7 1SP1 replace DSP7 DSP3 with 1SP1
DSPO and DSP4 1SPO replace DSPO 1SPO with 1SP1
and 1SP1 replace DSP4
DSPO and DSP3 1SPO replace DSPO DSP4 with 1SPO
and 2SPO replace DSP3 (DSPO, DSP2, DSP7) with 2SP0
DSP2,DSP5 and 1SPO replace DSP2, DSP6 with 1SPO
DSP6 1SP1 replace DSPS, DSP1 with 1SP1
and 2SPO replace DSP6 (DSP4, DSP7, 1SP0) with 2SP0
DSP1,DSP2 and 1SPO replace DSPI, DSP5 with 1SPO
DSP3 2SP0 replace DSP2, (DSPO, DSP6, 2SP1) with 2SP0
and 2SP1 replace DSP3 (DSP7, 1SPO, 2SP0) with 2SP1
DSP1, DSP2, 1SPO replace DSPI, DSP5 with 1SPO
DSP4 and DSP6 2SP0 replace DSP2, (DSPO, DSP3, 2SP1) with 2SP0
1SP1 replace DSP4, (DSPO, 2SP1) with 1SP1
and 2SP1 replace DSP6 (DSP7, 1SP1, 2SP0) with 2SP1
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5. SIMULATION

The simulation of the fault tolerance mechanism in the proposed systems has been
accomplished using VHDL and (Xilinx Foundation F2.1i ) software. The simulation is
implemented for a 3D hypercube system, and during this simulation, the following assumptions
have been considered:

-The FPGA device is considered reliable;

-The activation of the fault in a DSP processor results in the failure of service is carrying out and
all its inputs and output ports;

- Each DSP fails independently from the others in the probabilistic sense;

- The time interval between two successive <I'm alive> messages ( which represented by the
code 5AH) is assumed to be equal to eight clocks;

-The messages consists of number of frames (each frame consists of eight bytes) are sent during
the time interval between two successive <I'm alive> messages.

- In case of fault, all DSP processors return back one processing step, which is assumed the point
of sending the last <I'm alive> message;

- Two or more faults appear to be simultaneous if their activations occur within the same time
interval between two successive <I'm alive> messages, sequential faults occur during separate
time intervals;

-The communication port of each DSP processor are named as A, B, C, D, E, and F.

- Each DSP processor connect to the crossbar switch in the FPGA through communication port-E
- Communication port-F in every DSP processors is devoted to send <I'm alive> messages to the
FPGA device;

-Communication ports (A, B, C and D) are used for communications between the DSP
processors.

-In the simulated system, processors are used without any synchronization or scheduling delays.

5.1 Simulating TMS320C40 Communication Port Protocol:

A communication port transmits each of the 32-bit words stored in its output FIFO on a byte-
to-byte basis. Because the control and data lines are bidirectional, each ’C4x must have
ownership of the communication port data bus before starting a word transfer. A simulated token
is used to designate bus ownership: the communication port that has the token owns the
communication port data bus and can transmit data. Figure (6) shows the interconnections
between two TMS320C40 DSP processors[8]. One important feature of the ports is that they can
work with the DMA coprocessor to transfer data without CPU intervention, allowing the CPU to
perform other tasks.

——
e ke »—| CRECH
TAK1 | | CACR:
Processor  TITHY |« »|TCSTRB4  Processor
r TROV1 | »—| CROV4 ’
ciD(7-0) |+ »—| C1D{7-0)

Figure 6 Communication between two DSP processors using communication ports
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This simple communication interface consists of the following bidirectional control and data
lines:
[1 CREQx — communication-port token request. A ’C4x activates this signal to request the use
of the communication-port data bus.
[1 CACKx — communication-port token acknowledge. A *C4x activates this signal to relinquish
ownership of the communication-port data bus upon receiving a CREQx from another *C4x.
LI CSTRBx — communication-port strobe. A sending *C4x activates this signal to indicate that it
has placed a valid data byte on the communication port data bus.
(1 CRDYx — communication-port ready. A receiving *C4x activates this signal to indicate that it
has received a data byte via the communication port data bus.
[1 CxD(7-0) — communication-port data bus. This bus carries data bidirectionally, one byte at a
time, between two ’C4xs or between a ’C4x and some other device.

A data transfer operation between two DSP processors using communication ports takes four
basic steps to complete:
1) The CPU or DMA coprocessor of the sending DSP writes a 32-bit data word to the output
FIFO (of a communication port) via a memory-mapped address.
2) The communication port then places the 32-bit data word on CxD(7-0) on a byte-to-byte basis
(LS byte first), activating CSTRBx to signal the receiving communication port that the bus
contains a valid data byte.
3) Upon receiving each data byte, the receiving communication port activates CRDYx to indicate
that it has received the data byte.
4) After receiving the 4 bytes of a 32-bit word, the CPU or DMA coprocessor of the receiving
DSP can then read the data from the input FIFO via a memory-mapped address. Each of the input
and output FIFOs can buffer a maximum of eight 32-bit words. This operation was simulated
using (Xilinx Foundation F2.1i ) simulator as shown in figure 7, assuming that the token transfer
operation has been asserted.

BREFE_TRT? . C4

ERTERTREENNY

||||||||||||

||||||||||||

]IFEHLIIIH.{IW F T,

= ad

L
e

Figure 7 Simulation of data transfer operation between two DSP processors using
communication ports
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In next simulation cases we will eliminate the handshaking signals ( CSTRBx and CRDYXx)
to simplify of the timing diagrams. Also we represent the message that transferred between the
processors in the system as a decimal counting number. We simulate three case studies: Fault free
operation, Operation with one fault, Operation with two fault.

5.2 Case Study-1: Fault Free Operation

This part of the simulation was performed to model the interprocessor communication in the
proposed system in fault free operation. As shown in figure 8, DSP1(port-A) and DSP2 (port-A)
they send messages to DSPO (port-A and port-B respectively). Then DSPO perform processing
(addition) on the two received messages and send the result (through port-A) to DSP4(port-A).

5.3 Case Study-2: Operation With One Fault

This part of the simulation was performed to model the first case in table-1.The same example
described in case study-1 is repeated here with the assumption of occurrence a fault in DSPO.
Therefore all communication ports of DSPO are tri stated. The fault is indicated by the absence of
the <I'm alive> message of the faulty processor. As illustrated in figure 9, 1SPO is activated and
replaces DSPO in operation. The figure also shows the activation of interrupt signal that send to
all processors in the system to stop processing and go back to point of the last <I'm alive>
message. Finally the address of the faulty node is appears in the <I'm alive> message.

.2 S0nz  100ns 1G0ins 2Jins 25(ns 300ns 350ns [{{0ns 450ns G500ns 550ms €0dns &50ns 7Olns 7ilns ElJims

ol dwbidwobidwebdinl e cBadnobwdddvdadnaidwaine e becedwndwobedwabdwoebnboe P

SCRCICRCRCRCIEY =L | (el ok el ks gl ki sy ek ety ks ks ikl i el ekl ekl bl e ey o ik ik ke ki el il bl etk ek el ks ks il il
40ns
SR

BPSF1_CHAY. Chex
BDSFL_CHE?. (hex
BDEF2_CHA?. Ches
BDSF2_CHE?. Chex
BDSFA_CHA'. {hex
BDSFA_CHE?. (hex
BPSPA_CHOY. Chex
BDSFA_CHE?. (hex

BILSFA_CHA?. Chex|
B $FB_CHE?. (hex|
Bi $FB_CHE?. (hex|
B ESP‘LGHH'?. {hex
BPSF4_CHE?. (hex|
BiLSF1_CHE?. (hex|

BDSF@_CHF_ALIVE
BDSF1_CHF_ALIVE
BDSF2_CHF_ALIVE]
BPSF4_CHF_ALIVE
BiSFA_CHF_ALIVE
BiSF1_CHF_ALIVE

Figure 8 Simulation of data transfer in fault free operation
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5.4 Case Study-3: Operation With Two Fault

This case simulate the third case in table-1( fault in DSPO and DSP4). Again the same
example described in case study-1 is repeated here. We consider in this case two situations: in the
first situation (figure 10), the two faults occurs within the same period between two (successive)
<I'm alive> messages (simultaneous faults). In the second situation (figure 11), the two faults
occurs in different periods (sequential faults). In both situations, the spare processors (1SP0O and
1SP1) replace and resume the operation of the faulty processors DSP0O and DSP4 respectively.

lus 1.0%us 1.lus 1.15us 1.Zus 1.Z25us 1
171 EYYTY FYETY FRTYY FYTYY EYYTY VYT P P RTR Tema et 1
|

1ICLE it - | - r.rm— - I
----------- ek gy ek it | il e et i il S S e st e gy i gy ke gy et BN e Ry seieks gy el ey s gy il gy il i sk

Gns 700ns 750nms E50ns 300ns 350ns s 1.35us l.4us

o §00ns -3u
dolodon bl ST Y FYYYR FYTTA FUTR1 FYYYY FYYY FYYP P IOV OO ATOT

BDSPL_GHAY . Chex
BDSPL_CHBE?.<hex

BDSP2_CHAY . (hex
BIDSP2_CHBY . (hex

BIDSPA_CHAY . (hex
BDSPA_CHBY . (hex
BIDSPA_CHC? . (hex
BIDSPA_CHE? . (hex

B SPA_CHAY . (hex
B SPA_CHBY . (hex
B SPA_CHE? . (hex

BDSP4_CHA?. (hex
BDSP4_CHE?. {(hex
BASP1_CHE?. {hex

BDSP1_CHF_ALIVE
BDSP2_CHF_ALIVE
BDSP4_CHF_ALIVE
BLSPB_CHF_ALIVE
B1SP1_CHF_ALIVE

x5 T
L DSPA fault

Figure 9 Simulation the data transfer with the fault of DSP0

6. PERFORMANCE DISCUSSION

A faulty hypercube need to be reconfigured to perform the computation task and
communication as required by the algorithm with minimal or no performance degradation. In a
fault free operation, the cost of communication overhead is constant between any two given
nodes in every 3D hypercube. The occurrence of the faults and the mechanism of fault detection,
reconfiguration, and to recovering the system from erroneous states causes some degradation in
performance. The degradation in performance due to the fault comes from two sources: the first is
caused by the overhead result from configuring the system and routing some messages through
the crossbar switch in the FPGA device. However, this overhead is small and can be neglected
comparing to the second source of performance degradation which is caused by the stopping the
processing in all processors in the system and go back to point of receiving last <I'm alive>
message.
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Figure 10 Simulation the data transfer with the fault of DSP0 and DSP4(simultaneous
faults)

According to our simulation, the degradation in system performance depend on the length of
the message (in frames), and number of faults. For example, if the message consists of » frames
and number of faults per message is m, then the degradation in system performance for the
sequential faults is equal to (m/n). However, the degradation in performance for the simultaneous
faults is equal to the degradation caused by one fault. Since the fault is cannot be detected until
receiving <I'm alive> message.

Using the FPGA will reduce the design offers, cost, power consumption, and the delay in data
routing comparing with other design techniques in implementing interconnection networks and
hardware diagnosis circuits (as mentioned in section 1). In addition, using the FPGA devices,
provides a very flexible system interconnection networks and allows system developments.
Using the TMS320C40, the communication links are built-in with the processor, therefore, failure
in the processor means the failure in the communication channels of that processor. This will
reduce the complexity of fault tolerant design, since it is not required to design a spare links. The
failed processor is replaced with its communication channels.
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Figure 11 Simulation the data transfer with the fault of DSP0 and DSP4(sequential faults)

7. CONCLUSION

In this paper we present an architecture which uses hardware redundancy in the form of
spare nodes that logically replace the faulty nodes to design a fault tolerant (n) dimensional
hypercube system. In our scheme, the n-dimensional hypercube is divided into 2" subcubes
each of dimension (i), we call each of these subcubes a cluster. One spare node is assigned to
each cluster. And the spare node is connected to every regular node of its cluster via 1/O
communication Ports.

Every node in the proposed system is TMS320C40 digital signal processor which is devoted
to overall task computation. The FPGA is used to link two of the regular adjacent nodes between
two different 3D hypercube in an extended hypercube. In addition to that, it is used to link the
first and second stage spares to some of its adjacent regular nodes. The FPGA units in the
proposed system are also connected as an (n-3) dimension cube in the extended hypercube
structure.

Upon a node failure, the faulty node is assigned to one of the spares within the cluster. The
links of the faulty node are then neglected and the FPGA connects the spare in that cluster is used
to connect the spare to some of the neighboring nodes of the faulty node. To tolerate more than
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one node failure, the FPGA connected to each 3D hypercube is used to connect two additional
spares to that 3D hypercube.

The spare nodes is used in two stages: at stage one, the local spare in every cluster replaces
any faulty node in that cluster, at stage two; if the failure occurs in the same cluster, then one of
the second stage spares attached to the FPGA replaces the faulty node.

Compared with other proposed schemes, our approach can tolerate significantly more faulty
nodes with some overhead and small performance degradation and the resultant configuration
does not affect either the hypercube size, communication or computation algorithm already
developed for the hypercube multiprocessor.
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Abstract

The current work focused on the influence of cooling rate on the microstructure,
mechanical and tribological properties of cast in-situ composite. It was observed that the size of
intermetallic phase Mn(Al;_«\Fey)s and the dendrite arm spacing (DAS) increases considerably
with decreasing cooling rate of the cast ingot. Microstructural examination of these different cast
in-situ composites shows that there is no significant difference in the size of the in-situ formed
alumina particle. Superior mechanical properties, as indicated by ultimate tensile stress, yield
stress, percentage elongation and hardness, are obtained when the in-situ composites are
processed by cooling the cast ingot in water, resulting in refined microstructure. Higher hardness
due to refined microstructure and superior mechanical properties result in decreased wear rate in
cast in-situ composites cooled in water after casting, compared to the wear rates observed in cast
ingots cooled either in air or inside furnace. Cast in-situ composite cooled in water after casting,
shows higher coefficient of friction compared to those cooled in air or inside furnace.

Keywords Cast In-situ Composite, Al-ALOs;; Cooling Rate; Microstructure; Mechanical
Properties; Dry Sliding; Wear; Friction.
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