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Abstract

This paper develops a system level architecture for implementing a cost-efficient,
FPGA-based reconfigurable two dimensional (2D) FFT system. The adopted approach
considers both the hardware cost (in terms of FPGA resource requirements), and
performance (in terms of throughput). These two extremes are optimized based on
using run time reconfiguration, double buffering technique, shared Dual Ported RAM
(DPRAM) modules and the “hardware virtualization” to reuse the available processing
components. The system employs two one Dimensional (1D) FFT processor each with
sixteen reconfigurable parallel FFT cores. Each core represents a 16 complex point
parallel FFT engine. Thus the architecture supports transform length of 256X256
complex points, as a demonstrator to the design idea, using fixed-point arithmetic and
has been developed using radix-4 butterfly architecture. The simulation results that
have been performed using VHDL modeling language and ModelSim software
shows that the full design can be implemented using single FPGA platform
requiring about 50,000 Slices.
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1. INTRODUCTION

The two-dimensional Fast Fourier Transform (2D FFT) is widely-used for analyzing 2D
signals, such as images. For example, the frequency domain image filtering is one of the most
important applications where 2-D FFT can be applied. In general, the FFT algorithms are
hardware intensive algorithm, and therefore require a lot of hardware. With the advances in
VLSI technology, FFT algorithms are now implemented on programmable Digital Signal
Processors (DSPs), FPGA devices and dedicated FFT processor ICs[1-4].

However, with the decreasing the cost and growing in the capacity, FPGAs have been
widely used as coprocessors to boost the performance of data-intensive applications including
the FFT algorithms[5, 6]. Despite of that, high performance, large-scale DSP algorithms still
cannot fit in a single FPGA and require carful design considerations. In this context, the
hardware implementation of the FFT algorithm can
be done in either fixed or floating point. Floating-point arithmetic requires much more area
per operation (adders and multipliers). Furthermore, it has much higher demands on memory
capacity and bandwidth.

To overcome this challenge, fitting the whole Fourier transform processor on a single
FPGA chip is approached along two paths: First, the algorithm itself is examined and
optimized specifically to minimize the hardware resources. Second, applying different
techniques on the architecture (such as RC), to reduce the required hardware. Due to the
inherent parallelism of FPGAs and tightly coupled memory and computational units,
Reconfigurable Computing (RC) with FPGAs potentially offers high performance at lower
chip area and lower power consumption[7].

This paper is concerned with the design of a new, 2D FFT architecture for implementing
the algorithm over block of 256X256 complex point. We focused in this paper on finding the
most suitable structure for implementing efficient and cost effective 2D FFT algorithm using
RC technique. Design strategies have been placed on minimizing the logic and resource
utilization of the implementation, leaving resources for additional functionality that required
for the desired application. The system uses radix-4 architecture with fixed point arithmetic
which is sufficient in many domains. The target hardware for the implementation and
verification of proposed system is Xilinx FPGA development board equipped with a Xilinx
Virtex-5(XC5VLX330T) of 51,840 slices.

The rest of this paper is organized as follows. A background and an overview of the
related works are described in Section 2. Review of the proposed reconfigurable architecture
for one and two dimensional FFT algorithm is presented in section 3. The details of the
hardware design of the main components of the system are given in Section 4. Section 5
discuss the simulation results and performance analysis. Finally in Section 6, we offer some
conclusions.

2. BACKGROUND AND RELATED WORKS

The FFT algorithm used in this implementation is based on radix-4 butterfly which is one
of the most efficient methods of performing the FFT calculation. Radix-4 based FFT
algorithm has better signal-noise ratio than that of radix-2 algorithm[8]. The radix-4 butterfly
takes four complex input data words, computes the FFT, and produces four complex output
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data words. Figure (1) illustrates the single flow graph of 16-pint radix-4 DIF-FFT
algorithm..

18 Point Radx - 4 FFT

Denmmabon & Frequency
a[g) s x|af
ani o A4]
a2 o xa
aE O Azl
AL . > W1]
afs] #5]
A6 &“‘\ : X3
Rt M43
apd o Xz
a@ o ¥IE]
MW~ —Se ol
1] M 14|
#12] ¥3)
%]13] LA
2141 2 X1
2 15] i : KI5|

- FAmdix 4 Butterfly
o wWiaveTorr DR poines

Figure (1) 16-point Radix-4 DIF-FFT signal flow diagram

Each butterfly requires four complex adder / subtractors and three complex multipliers.
The mathematical model for each radix-4 butterfly is[9]:
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Typically, 2D DFTs are implemented using the Row-Column (RC) decomposition
technique [8] that involves a number of 1 dimensional Fourier transforms. More precisely, a
2D transform is achieved by first transforming each row, replacing each row with its
transform and then transforming each column, replacing each column with its transform.
Thus a 2D transform of a 256 by 256 image requires 512 1D transforms. Many different
researches for the implementation of 2D FFT algorithms on FPGA have been proposed since
the introduction of this technology. For example, XU et al. [10] proposed an FPGA-based
reconfigurable, hierarchical-SIMD (H-SIMD) machine with its co-design of the Pyramidal
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Instruction Set Architecture (PISA). He assumes a multiple FPGA board where each FPGA
is configured as a separated SIMD machine to implement 2D FFT. While Shirazi et.al. [11]
implemented a 2-D FFT on a custom computing machine called Splash-2, using floating
point arithmetic. Dick [12] proposed a reconfigurable architecture for 2-D FFT using
polynomial transforms on XC4000E FPGA device. He showed that his architecture is %46
efficient than a row column processor. K. D. Underwood et. al[13] develop an intelligent
network adapter for cluster-based parallel computing using FPGA to implement 2D FFT
algorithm. In [14], I. L. dalal present a single FPGA engine to perform real-time 2D FFT
image reconstruction using array of up to 16 coils for parallel MRI. Recently, I. S. Uzun et.
al,[ 15] an FPGA-based parametrizable environment based on the developing parallel 2D FFT
architecture was presented for image filtering applications.

3. SYSTEM ARCHITECTURE

As mentioned before, the fundamental operations in implementing 2D FFT algorithm is
equivalent to doing a 1D-FFT on the rows of the block of data and then doing a 1D-FFT on
the columns of the result. In other words, we can implement 2D FFT algorithm by: Compute
the 1D-FFT for each row, Transpose the matrix, Compute the 1D-FFT for each row, and
Transpose the matrix. Figure 2 illustrates the structure of proposed reconfigurable pipelined
2-D FFT architecture. The architecture is structured with two FFT processors; Rows FFT
Processor (RFFTP) and Columns FFT Processor (CFFTP). The two processors are identical
and each FFT processor is essentially a 1-D reconfigurable FFT processor with attached four
DPRAM memory banks. DPRAMs are used to temporally store frames between two the
processors, thus allowing a frame to stream from the input to the output. The four Dual-
Ported RAM (DPRAM) memory banks (DPRAMI... DPRAM4) are used to facility the
parallel accessing to those shared banks by FFT core of each processor under the control of
one Address Generation and Control Unit (AGCU). We will begins by describing the
architecture of reconfigurable 1D FFT processor.

N
Shared

@ DPRAMs CFFTP System

(1D FFT Processor) Output

System ( RFFTP
Input L (1D FFT Processor)

J

Figure (2) 2D FFT system block diagram
3.1Reconfigurable 1D FFT processor

The designed 1D FFT processor is implemented using reconfigurable parallel-pipeline
architecture. The considered architecture focuses on minimizing and optimizing the hardware
resources without large scarifying in performance. Each processor is designed to implement
256 point 1D FFT algorithm.

As shown in figure (4), each processor contains 16 FFT cores and each core can implement
16-point radix-4 FFT algorithm. The input data are grouped in 16 blocks; each block consists
of 16 complex points which then distributed to 16 FFT cores for execution. When using
Radix-4, the N-point FFT consists of log4 (N) stages, with each stage containing N/4 Radix-4
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butterflies. The signal flow graph for implementing 1D 256 complex point decimation in
frequency (DIF) readix-4 FFT algorithm in proposed system is shown in figure (3).

The computation of 1D 256 point radix-4 FFT algorithm requires four stages
implemented in four steps. In each step, one stage is executed. The result of each step is
stored and then reused by the same hardware to execute the next step. The time required to
compute an entire stage is equal for all stages. Data exchange is required between each group
of four FFT cores after executing stage-1 and stage-2 of the algorithm [see figure (3)].

To speed up the operation of data transfer between the FFT cores and the I/O system and
improving the throughput, a separate input and output buses are used for data input/output
[see figure (4)]. Considering that there are two separate external memory models to download
and upload the 2D FFT system with the I/O samples in parallel. A torus network is chosen to
connecting the FFT cores to facilities data exchange between the stages and for the data
output. This allows the sharing of data among neighboring cores which reduce the
communication overhead.
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Figure (3) Flow graph of reconfigurable 1D FFT

Four Horizontal Buses (HB), and four Vertical Buses (VB), are used to connect FFT cores.
Every bus connects group of four FFT cores. Vertically connected FFT cores exchange data
between them after stage-1. Horizontally connected FFT cores exchange data between them
after stage-2 [see figure (3)]. In either cases, every core send/receive four complex point of
the intermediate result to/from other cores within its group.
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3.2 Reconfigurable 2D FFT System

Figure (4) illustrates the structure of proposed reconfigurable pipelined 2-D FFT system.
As mentioned earlier, this architecture is structured with two FFT processors; Rows FFT
Processor (RFFTP) to perform 1D FFT algorithm on rows, and Columns FFT Processor
(CFFTP) to perform 1D FFT algorithm on columns. The two processors share four Dual-
Ported RAM (DPRAM) memory banks (DPRAMI...DPRAM4) under the control of one
Address Generation and Control Unit (AGCU). The size of DPRAM modules is depend on
the size of the matrix and the word length. Selecting of the word lengths makes a
compromization between two factors: (quantization noise) due to iterative process of the
FFT algorithm, and precision of the FFT computations. It is desirable to have short
wordlengths and less complex circuitry. Short word lengths lower the cost in terms of chip
area and power consumption. On the other hand, short word lengths lower the precision of
the FFT computation. Therefore great care must be shown in selecting word lengths.

Since the target output is the frequency components of the input signal. Therefore, the
amplitude of the input signal is effective less and can be normalized. Based on this fact, we
assumed that the input signal is in the range +1, and using fixed point implementations, each
of the real and imaginary parts of the I/O data are represented in 16-bit format with one bit
for sign, one bit for integer and 14-bit for fraction. Therefore, all data pathways (buses) are
also in 16-bit two's complement signed format.

During the 1D FFT computation results at a particular stage are scaled and rounded
to 16-bit. Based on this assumption, the required shared memory to store intermediate results
of implementing FFT algorithm on matrix of 256X256 complex point is 256KB. Therefore
each of the four DPRAM banks is of size 64KB organized as 32KX16bit in order to store the
real and imaginary parts of complex numbers in successive memory locations. Every of the
16 FFT cores share one memory bank. This memory architecture allows subsequent input
blocks to be processed in a continuous, pipeline manner so that all of the FFT cores in the
two processors can be engaged all the time. The twiddle factors are precomputed in 8-bit
format and are stored in local memory within the FPGA at configure time. Interprocessor
synchronization is required in accessing the shared memory by the two processors.
Synchronization is done via AGCU such that CFFTP begin executing FFT on columns of
block (i), only after RFFTP finished executing FFT on rows of block (7).

In addition for the communication between FFT cores, the vertical buses are also used
as data input buses (to down load the input data from the external memories) in case of
RFFTP and as data output buses (to upload the result of computation to the external
memories) in case of CFFTP. While the horizontal buses are also used to upload (download)
the intermediate result to (from) shared DPRAMs for the PFFTP (CFFTP). The input and
output systems are a set of input/output circuitry within the FPGA.

The address generation and control Unit (AGCU) is a state machine provides the required
addresses to manage the communication interface between the two FFT processors. In
addition, it provides a number of control signals to coordinate and to synchronize the activity
of different units in the 2D FFT system and to initiate processing and monitor its completion.
Also, the AGCU provides the addresses of DPRAMs and producing the global clock and
control signals to manage data load/store and transportation process in the system, as we will
be explained in paragraph 5. With suitable hardware permutations schemes, this circuitry
allows for the scheduling of intermediate results in shared DPRAMs, so that the correct
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butterfly operations on the block columns are preserved. Finally, the ACGU controls and
configures the input/output system to route the input and output data between FFT
processors and external world. Our implementation of the algorithm focuses, in addition to
area cost, on optimizing the execution time by hidden the matrix transpose time with the
FFT execution time.
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Figure (4) 2D FFT system architecture

4. FFT CORE HARDWARE DESIGN

As illustrated in previous section, each 1D FFT processor contains 16 FFT cores for
performing the butterfly computations needed for the FFT algorithm. Every FFT core
consists of four FFT radix-4 butterflies (which are referred as the basic radix-4 butterfly
(BR4B) processing element) in a full parallel configuration, a local FIFO buffers of size 16
complex points (Local 16FIFO) to store the intermediate results of the computation, two sets
of 16X32 bit deep FIFO buffers, and the Local Control and Configuration Unit (LCCU). The
FPGA receives input samples from external source and then distributing them, under the
control of AGCU, to one of the two sets of 16FIFO buffers in each FFT core. By utilizing this
double buffering structure, the two sets of 16FIFO buffers are used to feed the FFT cores
alternatively, thus solving the problem of data latency in data distributing process. Moreover,
double buffering architecture allows subsequent input frames (rows or columns) to be
processed in a continuous, pipeline fashion. Also, this allows real-time processing is
achieved, and all of the butterflies in all FFT cores can be engaged all the time. The block
diagram representation of the FFT core is depicted in figure (5).

In the beginning of processing of a new data vector, the input data are loaded from one of
the two 16FIFO input buffers and distributed to the operand registers within each BR4B.
During the computation, the intermediate results of the BR4B units are stored in local
16FIFO buffer. Then routed through the VB or HB to other cores ( data exchange ),
depending on the stage being executed. After the end of computation of the current frame,

82



AL-Allaf: FPGA-based Reconfigurable 2D FFT engine

the result is return back to the same 16FIFO input buffer, (replacing the input frame) - in
which is sent in next time - through the HB to the shared memory (for RFFTP), and through
the VB to the outside world (for CFFTP).

The LCCU is mainly responsible for sequencing the execution of local hardware on the
FFT core during different execution phases. It sends number of control signals to set the
MUXs and DMUX within the core to appropriate configuration to rout the data between
components of the cores. Furthermore, it sends enable signals to the FIFO buffers of the core
and to the operand registers of the BR4B units to perform the data exchange between the
FFT cores. The AGCU provides different clock signals to keep track of data input/output in
FIFO buffers and switching between the 16FIFO input buffers during data load/store phase
and FFT computation phase. It implies that a particular stage of the FFT computation is done,
either the input or output process is done, and the FFT computation process is accomplished.
Finally, is also responsible of producing counting signals to address the coefficient ROM
within every butterfly to provide the multipliers with the correct twiddle factors.

From input system for

To the output system RFFTP and from

for CFFTP and to the DRPAMs for CFFTP

DRPAMs for RFFTP > I (data downloading)
(data uploading) ; <
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Figure (5) Architecture of the FFT core

4.1 Basic Radix-4 Butterfly (BR4B) elements

The main advantages in utilizing a radix-4 butterfly operation is that it has better speed
performance, in spite of its complexity, and require less hardware compared to Radix-2. It
requires 3 complex multiplies and 4 complex additions. Therefore, the total cost in complex
multipliers is 75% of radix-2 FFT, although it uses the same number of complex additions.
Figure (6) shows the main components of the basic radix-4 butterfly (BR4B) elements.

Each BR4B consists of three booth 16*8bit complex multipliers, and 16-bit
adders/subtractors. Also each BR4B has eight 16-bit operand registers that accept (under the
control of LCCU) the real and imaginary parts of four complex input points.

Coefficients (or twiddle factors) are pre-calculated and stored in local coefficient ROM
as 8-bit two’s complement signed fixed-point words for each butterfly to achieve parallel
access to twiddle factors by all butterflies. The adder/subtractors perform the butterfly
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operations on the data stored in the operand registers. The result is then send to the complex
multiplier to multiply it by the twiddle factors.

( Re (x(n)) A From
I (x(n) L MUX3
Re (x(n +N/4))
Im (x(n +N/4))
4 Re (x(n +N/2))
o Im (x(n +N/2)) Coefficients
R4 Re (x(n +3N/4)) ROMSs

perand Im (x(n +3N/4))

:\\Regi sters \ U : U

Adders/SubtractorsT Complex | To local
(Radix-4 Butterfly) | Booth ==> 16FIFO |
J Multipliers :

Surpunoy

16 bit buffer

Figure (6) Basic Radix-4 Butterfly (BR4B) Datapath

The scaling of the intermediate results in FFT computation is necessary in order to
prevent overflows with fixed-point arithmetic[14]. The 16 bit results of the butterfly
operation are scaled by % by applying right shift. The 24 bit result, growth of the fractional
bits created from the multiplication, are rounded to drives the dynamics range back to 16-bit,
which is sufficient in most practical cases[16]. The results are then stored for further
processing in next stages. The design of the butterfly unit was simulated using the gate level
simulator ModelSim. Both functional and post layout simulations were performed to confirm
the correct operation of the design.

4.2 Complex multiplier

It is important to minimize the silicon area of the FPGA circuits, which is achieved by
reducing the number of functional units (such as adders and multipliers), registers,
multiplexers and interconnection wires.

The complex multiplier is the key component in the data processing. The direct
implementation of complex multiplier requires 4 real multipliers, one adder and one
subtractor. Furthermore, the multiplications are the most power dissipating arithmetic
operations. Today's FPGA, contain a number of speed optimized signal processing building
blocks, such as multipliers, RAM blocks or I/O structures with propagation delays in the
range of a few nanoseconds [19].

The complex multiplier used in this work requires only three real multipliers and four
adder/subtractors. The multiplication of two complex numbers in component form is given
by:

U=(xrtjxi)(artjai) = (xrar-Xiai)+j(xiartxrai) &)
Inherent dependencies that can be used to reduce the circuit costs. Several possibilities

exists for carrying out complex multiplication with just three instead of four multiplications.
For instance, eq(5) can be replaced by the following equation as an alternative:

U=[xr(artai) - (xrtxi)ai] +j [xi(ar-ai) + (Xr+Xi)ai] (6)
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Note that the result of the term (xr +xi)ai 1is used to evaluate both the real and the
imaginary parts of U, then the complex multiplication is implemented with three
multiplications and five additions.

5. PROCESSING 2D FFT ALGORITHM IN PROPOSED SYSTEM

In general, algorithm for 2D FFT is four serialized steps:
1. FFT of Rows
2. Matrix Transpose
3. FFT of Rows
4. Matrix Transpose

In present architecture, matrix transposition is implied during data storing/loading in the
DPRAMs. The two processors in steps 1 and 3 operate independently on their local data of
sequential blocks in pipeline architecture. Steps 2 and 4 are implemented by the AGCU in
parallel on sequential frames.

These four steps are overlapped between RFFTP and CFFTP as shown in figure (7).

*

Block-1 { Steps 1 and 2

Steps 3 and 4

Block-2 { Steps 1 and 2
Steps 3 and 4
Steps 1 and 2
plockes { Steps 3 and 4

Block-4 { Steps 1 and 2

Steps 3 and 4

»Time
* St Stepl and 2 implemented in REFTP while Steps 3 and 4 implemented in CEFTP

Figure (7) Overlapping in implementing 2D FFT algorithm in proposed system

The 2D FFT algorithm starts by loading the first row of the matrix from the external
memory in digit reverse order and distributed to the 1% set of the input 16FIFO buffers in the
RFFTP under the control of AGCU. Then 1D DIF FFT is computed on the stored data.
When this phase is completed, the data is returned to the same input 16FIFO buffer that read
from it. After that the RFFTP start directly to process the second row of input data from the
2" set of input 16FIFO buffers. The result of the first row is read out from the 1% set of
16FIFO buffers in the RFFTP processor (under the control of AGCU) and stored (in-order) as
a column vector in the shared DPRAMs. By this method the transposition phase is done in
parallel with the data computation phase.

When full block (256 rows) is processed by the RFFTP and stored as column vectors in
DPRAMs, the CFFTP start by processing the first row vector of the block.
Under the control of AGCU, row vector of data are read from DPRAM and stored in the 1
set of input 16FIFO buffers in the CFFTP. After that, a 1D DIF FFT is computed on stored
data as described for RFFTP. After every processed row vector, the AGCU read the data
from the input 16FIFO buffer in the CFFTP and stored through the output system in external
RAM in transposition order.
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In real time operation, the CFFTP start the operation after a block of 256 input vector
has been processed by the RFFTP. This is the case for the first block only. In subsequent
blocks both the PFFTP and CFFTP operates concurrently on sequential blocks with no delay
penalty as follows:

In the first block of 256X256 complex points, the result of RFFTP is stored as a column
vectors and read from the DPRAMs (by the CFFTP) as a row vectors (to perform the
transposition). In the next block of 256X256 complex point, the result of the RFFTP is stored
as a row vectors (replacing the processed row vector by the CFFTP) and read from the
DPRAM (by the CFFTP) as a column vectors. This operation which is repeated alternatively,
in subsequent blocks, is necessary to allow both processors to use the same shared memory at
the same time with different blocks. The correct addresses of both ports is generated by
ACGU.

The data input, computation and data output operations are overlapped, so that the FFT
system is never left in an idle state waiting for an I/O operation. This provides high
throughput rates for real-time applications, in which the input data is a sequential stream.

6. SIMULATION RESULTS AND PERFORMANCE DISCUSSION

This paper presents a proposed architecture for the development of a 256X256 point radix-
4 2D FFT system targeting low-cost FPGA technologies. Designing DSP algorithms using
FPGA presents great advantages due to its parallel processing method and its flexible
structure, high integration and velocity. The proposed architecture uses reconfigurable
computing to carefully integrates two orthogonal methods for trading-off hardware cost and
performance. This type of implementation leads to decrease in the silicon area at the cost of
increasing of processing time. However, different methods are used to increase the
performance such as using double buffering technique, parallel butterflies’ execution, shared
memory, and pipeline scheme. Additionally, using these techniques and partitioning
application into coarse-grain tasks, the communication overheads can be hidden.

In order to overcome the data I/O latency problem, the proposed architecture employs
double buffering technique within each 1D FFT processor by using two sets of input FIFO
buffers. The switching between those pairs of input FIFO buffers overlaps data
communications with computations. Also double buffering technique allows to continues
data stream processing, thus real-time processing is achieved. The global controller (AGCU)
lies in the FPGA and controls all the transactions between the two processors and between
the FPGA and the external world.

In our implementation, the communications among the butterflies in the 1D FFT
processor are based on a nearest neighbor’s grid interconnection. Data needed by every
butterfly can be routed from its neighbor by using a set of operand registers and FIFO
buffers. The system has been simulated using Modelsim software. Results of simulation
showed that the entire system can be implemented in one FPGA Virtex-5(XC5VLX330T) of
51,840 slice, 648 of 2kByte BRAMSs and multipliers. According to Table 1, one can see that
the designed circuit totally consumes 256kB of block RAMs and 128 complex
multipliers(384 real multipliers).This means that 19% of the available BRAMs and 60% of
embedded multipliers are consumed. The architecture supports scaled fixed point arithmetic
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methods. The inputs to the FFT are 16 bits wide, 14 bits of fraction, signed bit, and 1 bits for
integer( assuming that the input signal in the range between (+1 and -1). We have
implemented basic radix-4 butterfly element on Spartan-3E (XC3S500E) evaluation board of
4656 slices requiring 346 slices and 3 embedded multipliers. Based on this implementation,
we can estimate that one FFT core approximately requires (346*4) slices, which consumes
30% of the total number of slices. The entire proposed system (with 32 FFT cores) can be
implemented using a single FPGA platform of 50,000 slices or more.

Table 1: Component utilization summary for Virtex-5(XC5VLX330T)

Available components Consumed components
No. of slices 51,840 50,000
No. of MUL 648 384
No. of 2kByte BRAMs 648 128

The system cost is compared with previous work in which FFT is implemented
sequentially[17]. A pipelined 256x256 points 2D FFT module is designed. This module is
realized by 1D FFT along rows and 1D FFT along columns. A 1D FFT circuit is based on the
Xilinx 64-point FFT IP core and dual port RAMs. Four ID-FFT circuits are applied for
256x256 points 2D FFT module. 5149 slices and 8 Block RAMs are used to implement this
module. The Xilinx FFT IP core[18] uses the Radix-4 and Radix-2 decomposition for
computing the DFT. One Radix-4 or Radix-2 butterfly is implemented and then used
sequentially. If it is required to compute all the 256x256 points in parallel based on the FFT
IP core, then a huge number of FPGA recourses should be consumed.

7. CONCLUSIONS

An efficient architecture for the implementation of 2-D FFTs has been proposed and
implemented. The performances of implementations have been discussed. The system uses
two 1D FFT processor, one for implementing 1D FFT algorithm on the rows and the other
processor for implementing 1D FFT algorithm on the columns to realize the pipeline
execution. Also the system uses shared DPRAM blocks to allow simultaneous
communication between the two processors. Thus, hiding the communication overheads
leads to improve the performance.

The complex fixed point 256X256 2D-FFT algorithm has been implemented as an
example of an application that benefits from reconfigurable computing . The architectural
enhancement that we propose is the insertion of reconfigurable computing technology in the
data path of the 2D FFT system. According to figures 3 and 4, one can see that the proposed
reconfiguration strategy enables to reduce the number of real multiplier to the half. Also, area
efficiency and low cost have been attained for the parallel reconfigurable implementation of
2-D FFT compared to existing works[17,18].

The proposed architecture has lower resource usage than the others such as fully parallel
architecture. The stage processing of the algorithm uses shared adder/subtractor, hence
reducing resources at the expense of an additional delay per 1D FFT calculation.
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