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Abstract

In the present work the Finite Prism method was used for the dynamic analysis 

of bridges under moving vehicles. In this method a combination is used of the 

finite element method representing the cross section of the prism and Fourier 

series suitably chosen to represent the behavior of prism in the longitudinal 

direction, which satisfies the simply supported boundary conditions at the ends. 

Explicit time integration scheme was used for solving the equation of motion for 

each of the bridge and vehicle. In the present work damping was neglected in the 

formulation of equation of motion of bridges. These render to avoid the solution 

of global system of equations, because each equation becomes uncoupled with 

other equations. One of the main aspect in the present work is the coupling of 

the explicit solution technique of the equation of motion with the harmonic 

solution using the finite prism method for the problem of moving vehicle, taking 

into consideration the dynamic interaction between the vehicle and bridge. 

Keywords: Bridge, Dynamic Interaction, Finite Prism, Moving Forces, Moving 

Vehicles 
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DescriptionSymbol

Strain-displacement matrix.  B

Damping matrix. C

Contact point.  cp

Damping of the vehicle. vc

Material elasticity matrix. D

Displacement of the contact point at time t   . 
cp

td

Total force vector at time  t .tF

Dynamic interaction force between the vehicle and the bridge. 
cp

tf

Nodal number.  i

Stiffness matrix. K

Stiffens factor of the vehicle. vk

Length of the prism in z-direction.   L
Harmonic number. ml,

Mass matrix. M

Total mass of the vehicle.  vtm

Mass of the wheels (unsprung mass). tm

Sprung mass.  vm

Nodal shape function. iN

Total number of harmonics.   n

Number of the prism elements. ne

Internal resisting nodal force vector at time t .
l

tp

Natural coordinates. r , s 

Residual force vector at time t .
l

tR

Total weight of the vehicle. W

Strain vector. 

Damping ratio of the vehicle.  v

Introduction

The purpose of this work is to develop a procedure for obtaining the dynamic 

response of bridges subjected to moving vehicles. Naturally the bridges are three-

dimensional structures. The finite prism method which was first developed by Too 

[19] for the static analysis of bridges and also developed for the free vibration 

analysis of straight and curved deck and box girder bridges by AL – Darzi [1]. The 

same method is developed and used in the present work for the first time for the 

dynamic analysis of bridges due to moving vehicles. In this method a combination of 
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the finite element method representing the cross section of the prism and Fourier 

series suitably chosen to represent the behavior of the prism in the longitudinal 

direction, and to satisfy the simply supported boundary conditions at the ends is used. 

In this method the three dimensional problem is reduced to a series of two-

dimensional one which are decoupled for each harmonic number. The explicit time 

integration scheme is used for solving the equation of motion for each of the bridge 

and vehicle. These afford avoiding the solution of global system of equations, 

because each equation becomes uncoupled with other equations. One of the main 

aspect in the present work is the coupling of the explicit solution technique of the 

equation of motion with harmonic solution using the finite prism method for the 

problem of moving vehicle taking into consideration the dynamic interaction between 

the vehicle and the bridge. Two models of vehicle have been used: In the first model, 

called the moving force model, the inertia force of the vehicle and the dynamic 

interaction between the vehicle and the bridge has been neglected. In the second 

model, called the moving vehicle model, the vehicle is represented by a spring mass 

system in which the inertia force of the vehicle and the dynamic interaction between 

the spring mass system and the vibration of the bridge is taking into consideration. 

The validity of the developed numerical model has been studied by analyzing 

structures such as simply supported plates and beams subjected to moving vehicles 

with different speeds, by using both models of vehicles. Comparison with the 

available reported results has shown an agreeable matching. 

Finite Prism Formulation
The three dimensional displacement components can be written as: 

w

v

u

q                                                                                                          …(1) 

where u, v and w are the displacements along the three dimensional Cartesian axes  X 

, Y  and  Z respectively as shown in Figure (1): 

Figure (1) Typical Prism element.
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The displacement at any point in the eight-node prism element can be interpolated 

as follows [1,19]: 
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where l

i

l

i

l

i wandvu ,  are the nodal line displacements amplitudes for harmonic 

number ( l ) at node ( i ) for prism (e ), ( ne ) is the total number of nodal lines for the 

prism which is equal to eight, ( iN ) is the interpolation (shape) function in terms of 

the local coordinates sr,  which vary from –1 to +1 within the cross section of the 

prism. 

The discretized expression for strains and stresses within an element can be expressed 

as [2]: 
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where D  is the elasticity matrix [16] and the strain-displacement matrix 
l

iB

associated with nodal line ( i ) for the harmonic ( l ) can be expressed as [1]: 
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The strain and stress components in vector form can be written as: 
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T

yzxzxyzyx ,,,,,                                                                        … (7) 

T

yzxzxyzyx ,,,,,                                                                         … (8) 

Dynamic Equations 
The dynamic equation of motion of bridge can be expressed as: 

tFdKdCdM                                                                          … (9) 

where M , C  and K  are the global mass, damping and stiffness matrices 

respectively and ,d d  and d  are the acceleration, velocity and displacement 

vectors respectively and tF is the external applied load, which is function of time t. 

The damping matrix can be written as [3,18]: 

v

T
dvNcNC                                                                                          … (10) 

Because of the orthogonality properties [1] i.e.; 
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Thus; the stiffness and mass matrices for harmonic ( l ) can be written as: 

A
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ll

ij dydxBDB
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K .
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                                                                         … (12) 
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                                                                         … (13) 

The equivalent nodal force vector can be expressed as: 
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F                                                         … (14) 

where pf  is the vector of the applied concentrated force vector.  

The integration of stiffness and mass matrices are carried out numerically using 

Gauss quadrature method. 
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Dynamic Interaction Between the Vehicle and the Bridge 

Vehicle models 
       The two vehicle models moving over the bridge are shown in Fig. (2). In the first 

model the vehicle is represented as a moving force in which the dynamic interaction 

between the vehicle and the bridge is neglected. In the second model, called the 

moving vehicle model, the vehicle is represented by a single degree of freedom 

system comprising sprung mass ( vm ) and unsprung mass ( tm ) with viscous damping  

( vc ) included in the suspension, )( vk  is the stiffness of the vehicles. It is assumed that 

the vehicle travels at constant velocity and that the unsprung wheel is always in 

contact with the road surface which is assumed to be smooth. 

(a) Moving Force Model.                               (b) Moving Vehicle Model. 

Figure (2) Vehicle Models. 

Solution of Equation of Motion 

The integration of equation of motion (Eq. 9) is carried out using the explicit central 

difference scheme [12,14]. This is only applicable when the mass matrix is lumped 

mass matrix. This requires the transformation of constant mass matrix in (Eq.13) into 

a lumped mass matrix as in the following. 

Mass lumping 
The most simple method of lumping the prism mass matrix is by adding all terms of 

each line of the consistent mass matrix and placing the result on the diagonal, such a 

process gives the nodal masses in the form [5,8]: 
e

ij

e

ii MM                                                                                                   … (15) 

This method fails when applied to eight-node isoparametric element. The reason is 

that negative nodal masses are obtained in corner nodes. To overcome this, several 

v
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alternative schemes have been investigated in the literature [8]. In the present work a 

new approach was developed in which the total mass of the element is divided 

equally between mid – side and corner nodes as: 

ee

ii MM
8

1
                                                                                                     … (16) 

Another approach which is suggested by Owen and Hinton and by others [7,8,9,14], 

the mass is lumped to the diagonal terms of the consistent mass matrix in the form: 

dvNM
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ii
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                                                                                     … (17) 

where eM  is the total mass of the element. This procedure is also used in the present 

work and both approaches gave almost same results. 

Explicit Time Integration Scheme 
The dynamic equation of motion for harmonic ( l ) can be written at time t as: 

l

t

l

t

l

t

l

t FPdCdM                                                                    … (18) 

where 
l

tP  is the global vector of internal resisting nodal forces and 
l

tF  is the 

vector of equivalent nodal forces resulting from the dynamic interaction force 

between the vehicle and bridge cpf  at the contact point cp .

The dynamic interaction force cpf  is a function of the displacement, velocity and 

acceleration at the contact point cp

t

cp

t dd ,  and cp

td .

In the central difference approximation, the acceleration can be written as: 

l
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l
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l

tt
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t ddd
t

d 2
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2
                                                          … (19) 

and the velocity may also expressed as: 

l

tt

l

tt
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t dd
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d
)(2

1
                                                                     … (20) 

Substituting (19) and (20) in (18) and solving for 
l

ttd  yields: 
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where 
l

tR is the residual force vector at time t, which is equal to: 

l

t

l

t

l

t PFR                                                                                          … (22) 

If the matrices M  and C  are both diagonal matrices then the solution of equation 

(21) for equation i  can be easily written as: 
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                 … (23) 

where 
l

ttid  is the displacement in the i
th

 degree of freedom for harmonic number 

( l ). iim  and iic  are the corresponding diagonal terms of the mass and damping 

matrices, and irf  is the corresponding component of residual force vector. 

Starting Algorithm 
Since the governing equilibrium equation (23) or (21) involves information at the  

previous time steps t and tt , therefore; a starting algorithm is required. Based on 

the initial conditions, the value at t0  may be obtained from equation (20). 
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from which 
l
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l

ti ddtd
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Substituting equation (25) in (23), the displacements of the i
th

 degree of freedom at 

the first time step t  for harmonic ( l ) can be evaluated as: 

l
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2
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It is reported in the literatures [6,10,11,13], that the damping effect of the bridge is 

small and can be neglected in the analysis. The explicit algorithm is conditionally 

stable and it requires small time steps for accurate and stable solution. In the present 

work the estimation of critical time step given by Tsui and tony [17] was adopted. 
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Dynamic Condition at The Vehicle Contact Point 

The vertical displacement at the vehicle contact point cp

ttd  can be interpolated from 

the nodal displacement amplitudes at time step tt , i.e. 
l

ttd  by using equation 

(2), also the velocity at the contact point at time step tt  can be determined by 

backward finite difference scheme using the contact point displacement at time steps 

t  and tt  as [2]: 

cp

t

cp

tt

cp

tt dd
t

d
1

                                                                                  … (27) 

Moving Vehicle Response and Interaction Force 
The nodal force vector due to moving vehicle at time step tt  for each harmonic 

term 
l

ttF consist of several terms. The nodal force due to the contact force 

between the vehicle and the bridge cp

ttf  can be determined for both vehicle models 

as follows: 

Moving force model 

For the moving force model in Figure (2 - a), the applied force on the bridge is due to 

the vehicle weight, which moves at constant speed, and its position is a function of 

time only. The force at the vehicle contact point can be calculated as: 

gmf vt

cp

tt .                                                                                                … (28) 

    Then the nodal force vector for all harmonic numbers at time step tt  can be 

calculated using equation (14) and the amplitude displacement for each harmonic at 

time step tt  can be determined by equation (23). 

Moving vehicle model 

For the moving vehicle model shown in Figure (2 - b), the applied force on the bridge 

is due to the dynamic interaction between the vehicle and the bridge. The equation of 

motion for the moving vehicle model can be written as follows [2]:  

gmdkdcdm ttt

cp

ttvtt

cp

ttv

cp

ttt .                                 … (29 – a) 

gmdkdcm v

cp

ttttv

cp

ttttvttv .                                 … (29 – b) 

The displacement and velocity of the sprung mass at time step tt  i.e. tt  and 

tt  respectively can be determined depending on the known values of ttd  and 

ttd  by solution of the equation of motion of the vehicle (29) using explicit time 
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integration scheme. After a mathematical manipulation and simplification, the 

solution of tt  can be written as: 

ttvvtvtvt

vv

tt c
t

mmkRt

c
c

t
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1 2                   … (30) 

where 
cp

ttv

cp

ttvvt dkdcgmR .                                                                          … (31) 

To calculate t  at time tt  , the term t0 has to be known beforehand. So a 

starting algorithm is necessary and t  can be determined as follows:  
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                                            … (32) 

The initial condition of the vehicle and the bridge at the contact point can be written 

as:

0,0,0,0,0 00000

cpcpcp ddd                                                       … (33) 

By substituting these conditions in the previous equations, the initial value of  can 

be determined as: 

v

v

k

gm .
0                                                                                                    … (34) 

Then the interaction force at contact point at time step tt  i.e. cp

ttf  can be 

determined as: 

cp

tttttvvt

cp

tt dmmgmmf .                                                           … (35) 

Substituting equation (35) in equation (29 - b) yield: 

gmdkdcdmf t

cp

ttttv

cp

ttttv

cp

ttt

cp

tt .                             … (36) 

      In view of the fact that the wheel mass tm  is very small in comparison with the 

vehicle mass vm , it can be neglected in equation (36), and accordingly this equation 

can be rewritten as: 

cp

ttttv

cp

ttttv

cp

tt dkdcf                                                         … (37) 
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    The velocity of the sprung mass tt  can be calculated by using backward finite 

difference as: 

ttttt
t

1
                                                                                        … (38) 

Validation of the Method 

Moving force model 
In order to confirm the accuracy of the developed numerical model, a simply 

supported plate at two opposite edges and subjected to a moving force, as shown in 

Figure (3) was first considered, and the plate cross section is divided into five prism 

elements. The information below gives details of the material properties and the 

moving force: 

 Moving force = 4.4482 N 

 Force speed = 96.56 km/h 

 Modulus of elasticity (E) = 20684.4 MPa (concrete)  

 Mass density = 2400 kg/m
3

 Poisson’s ratio = 0.15 

 Plate thickness = 0.4572 m 

 The dynamic response of this plate under a moving force is presented in terms 

of the normalized mid span displacements as shown in Figure (4). The normalized 

displacement at mid span is defined as "the ratio of the dynamic displacement at mid 

span to the maximum static displacement at mid span when the load at any point 

along the span". The present results are compared with those of Srinivasan and 

Munaswamy [15] using the finite strip method. Figure (4) shows the relation of the 

normalized displacement at the center of the plate with the normalized position of the 

vehicle along the span of the plate. It can be noticed from this figure that when the 

vehicle leaves the plate, the normalized displacement at the center of the plate is of 

the order (0.16) which is due to the inertia force of the plate. 

Moving vehicle model 
 A simply supported beam with the geometry shown in Figure (5) and 

subjected to a moving vehicle model has been analyzed. The beam cross section is 

divided into four prism elements. The details of the material properties and moving 

vehicle model is given below: 

Modulus of elasticity = 22000 MPa (concrete) 

Mass density = 2400 kg/m
3

vm = 1000 kg 

vc = 8.54 N.sec/mm 

vk = 292 N/mm 

Span length = 5 m 
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moving force

15

The analysis is carried out using five harmonic terms only. The predicted dynamic 

response is compared with that of Cai et al. [4] as shown in Figures (6) and (7). It can 

be noticed that by increasing the speed of the vehicle up to (590.4 km/h), the  

maximum normalized displacement takes place when the vehicle is at about (0.7) of 

the span length, while when the vehicle moves at speed of  (295.2 km/h) the 

maximum normalized displacement takes place when the vehicle is at about (0.4) of 

the span.  

Figure (3) Geometry and finite prism idealization of two opposite edges simply                                            

                    supported plate. 

Figure (4) Normalized displacement at the center of simply supported plate. 
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Figure (5) Geometry and finite prism idealization of simply supported beam. 

           

Figure (6) Normalized displacement of simply supported beam due to vehicle         

speed (590.4 km/h). 

Cai et al
(4)
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Figure (7) Normalized displacement of simply supported beam due to vehicle speed 

(295.2 km/h). 

Dynamic analysis of deck girder bridge 
 A simply supported deck girder bridge with the geometry shown in Figure (8) 

subjected to vehicle model moving over the central girder. The bridge cross-

section is divided into 25 prism elements as shown in Figure (9). The details of the 

material properties and moving vehicle model is given below: 

Modules of elasticity = 200000 MPa (concrete) 

Mass density = 2400 kg/m
3

Span length = 15 m 

Poisson's ratio = 0.2 

Vehicle weight = 200 kN 

vc = 69.12 N.sec/mm 

vk = 5971.97 N/mm 

vehicle speed vary from 40 km/h to 100 km/h 

Figure (10) shows the variation of the normalized static and dynamic displacements 

at the center of the exterior girder of the bridge with the normalized position of the 

vehicle moving  over the central girder. The figure shows the effects of increasing the 

speed of the vehicle on the dynamic response of the bridge. It is clear that the 

dynamic response completely deviate from the static one when the speed of the 

vehicle get increased. 

Cai et al
(4)
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Figure (8) Details of cross-section of deck girder bridge 

Figure (9) Finite prism idealization of deck girder bridge 

Figure (10) Normalized static  and dynamic displacements of the center of exterior 

girder due to vehicle model moving over central girder 
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                                    Conclusions 
A new model for the dynamic analysis of bridges due to moving vehicle was 

developed in this work. 

The model is based on the coupling of the explicit solution of the equation of 

motion with the harmonic solution of the finite prism method. 

Two different models for the vehicle are presented, these are the moving force model 

which is assumed to be constant during the traveling time of the vehicle along the 

span, and the moving vehicle model which takes into consideration the interaction 

between the bridge and the vehicle model. The numerical results from the developed 

computer code in the present study have shown good agreement with published data. 

The interaction of the vehicle with the bridge shows that the dynamic response of the 

bridge significantly affected by the speed of the vehicle.  
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