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Abstract  

In the design stage or analysis of any dynamical system a detailed or 

comprehensive model is essentially required. In this work, different parts and 

components that are contained in the model of a turbo-generator unit (T.G) for torsional 

vibration analysis are considered  and the governing equations of which are presented 

and developed to estimate their respective parameters. These parts and components are 

mainly compressor seventeen stages and blades, turbine two stages and blades, 

reduction gear system with the safety shaft, the rotor of the generator, the exciter and 

the fluid film bearings on which the whole system is supported. The data upon which the 

system model is built are referred to Mosul gas turbine station units. The estimated 

parameters are those related to rotational inertia, damping and stiffness effects of the 

different components in the system. A detailed model of the system should be useful for 

the purpose of torsional vibrational during rotation with normal steady loading or 

under severe loading conditions utilizing a block diagram via Matlab. The system eigen 

values natural frequencies (critical speeds) and mode shapes are determined. 
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توليد توربينية  نموذج لغرض تحليل الاهتزازات الالتوائية في وحدة معلمات ال تخمين

 بالرجوع الى محطة توليد كهرباء الموصل الغازية
 

 الدكتور فارس قاسم يحيى           الدكتور زكريا يحيى محمد      الاستاذ الدكتور صباح محمد جميل  
 جامعة الموصل / قسم الهندسة الميكانيكية / كلية الهندسة

 الخلاصة

هنالك بالضرورة حاجة الى نمذجة تفصيلية او شاملة في مرحلة التصميم او التحليل لاي منظومة داينميكية. في 

هذا البحث اخذت بالاعتبار مختلف الاجزاء والمكونات التي يشتمل عليها النموذج لوحدة توربينية لغرض تحليل 

مة لغرض تخمين المعلمات المتعلقة بالنموذج. هذه الاجزاء الاهتزازات الالتوائية. تم تقديم او تطوير المعادلات الحاك

وبشكل اساسي,هي الضاغطة بمراحلها السبعة عشر والريش والتوربين بمرحلتيه مع الريش ومنظومة والمكونات 

التي يستند عليها النظام.  زيتةالتروس لتخفيض السرعة مع عمود الامان ودوار المولد والمحفز وكذلك المحامل الم

المعلمات المراد تخمينها هي تلك المتعلقة بتاثير القصور الذاتي والتخميد والنابضية في مختلف اجزاء المنظومة. 

يمكن الاستفادة منه لغرض تحليل الاهتزازات الالتوائية اثناء الدوران وفي حالة  الانموذج التفصيلي الذي تم تطويره

ة الثابتة وعند ظروف الاشتغال القاسية وباستخدام التمثيل الصندوقي مع برنامج الماتلاب تم حساب الاحمال الاعتيادي

 جذورمعادلات المنظومة وقيم الذبذبات الطبيعية )السرع الحرجة( واشكال الاطوار.
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Introduction  

         The main motivation of this work is the need for accurate model of a turbo-generator 

unit in gas turbine power stations. These models are essentially needed for transient load 

studies or in the analysis of the dynamic behavior of a turbo-generator for torsional vibration 

analysis in the unit under severe loading conditions (i.e. electric network disturbances). The 

generating units in Mosul gas turbine station has undergone several problems on a number of 

occasions due to running with this kind of loading conditions represented by electrical faults. 

          Building of a dynamical model is the first step in the analysis of a torsional  vibration  

problems. In the field of machinery dynamics, equivalent inertias, linear torsional springs and 

linearized damping coefficient have been used in order to construct a lumped or discrete mass 

model. 

    

Evaluation of Dynamic Coefficients    

        A major task in this work is to evaluate the necessary stiffness and damping coefficients 

that are needed in constructing a comprehensive dynamic model of a turbo-generator unit.  

Torsional damping is defined as a critical parameter, which cannot, in general, be 

reliably predicted by analytical or experimental means. Most of the individual damping 

mechanisms are complex and are not presently predictable at the design step     [1]. 

        There are only small damping effects in some of the rotating assembly. These are 

considered as negligible, such as oil film damping, gear sliding friction damping and fluid 

damping. Significant damping such as the material damping, electrical damping, and gear 

damping, may be accounted for. 

        The analysis, including, station-to-ground viscous damping has been formulated by a 

number of researchers in the past and recently [2, 3, 4].  

        Damping is the most critical parameter which is difficult to estimate. Viscous damping 

results from the shearing of a fluid (lubricant) in the gap between the moving parts are 

considered to be a linear function of relative velocity [5].  

        Damping is often a non-linear phenomena, it has been standard practice to linearize the 

description formulae as in gear damping, bearing oil film damping and electrical damping. On 

the other hand, when the non-linear fluid damping is linearized it employs an equivalent 

viscous damping [6].  

        The purpose of this paper is to built a complete torsional vibration model of a turbo-

generator unit for Mosul gas turbine station in conjunction with the electrical network. This 

type of model should be useful in investigating and analyzing the dynamic behavior of a 

turbo-generator unit under normal and severe loading conditions or sudden electrical network 

disturbances which causes the consequences of the mechanical failures in the couplings and 

rotating segments. The rotational critical speeds of the unit may also be predicted. 

 

Model Description and Mathematical Formulation  

         Introducing linear stiffness and viscous damping into a dynamical system results the 

following vector-matrix equation of motion: 

     (J)[θ̈] + (C)[θ̇] + (K)[θ] = [T]                                                                                      (1a) 

 θ  is the angular perturbation vector of the segment lumped masses and the blade masses. 
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          Describing the system dynamics in a state-space form the above equation may be 

reformulated to be: 

 [Ẋ] = [A][X] + [B][U]                                                                                                      (1b) 

Here, [X] is the state vector comprises the deviation angular positions and velocities, [U] is 

the input vector, matrices [A] and [B] are the proper system and input matrices respectively.      

         The homogenous case of the above state space-equation is: 

 [Ẋ] = [A][X]                                                                                                                      (1c) 

may be used to determine the system eigen values and eigen vectors from the determinant: 

[λI − A] = 0                                                                                                                      (1d) 

        Here A is the system matrix which contain elements related to the inertia, damping and 

stiffness matrices system. 

         In this system, the turbo-generator unit comprises a gas turbine of open cycle type with 

single shaft arrangement that contains 17-stage axial compressor and 2-stage axial turbine 

with multiple combustors. These stages are connected to the reduction gear system by a gear 

coupling and two rigid flanged couplings. The gear system consists of a pair of involute spur 

gears. They are connected to the AC generator (alternator) by a highly flexible spline shaft, 

named as quill shaft giving a mechanically limited safety device of the unit under overload 

conditions. The quill shaft is connected to a rigid flanged coupling. The operating speed of 

rotation of the compressor-turbine set is 5100 rpm, while that of the exciter-generator set is 

3000 rpm. The whole system is illustrated in figure (1). 

Figure (1): The turbo-generator unit (system studied), drawing not to scale 

           The system model may be represented by a collection of lumped masses, springs and 

dampers. 

 The governing differential equations of motion for a shaft segment and a jth blade of 

compressor and turbine, figure (2), can be written in terms of angular variation about the 
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steady state operating angular deflection and their derivatives to give the effective angular 

velocities and accelerations. They are as follows: 

 

 

 

 

 

 

 

 

Figure (2): Rotational inertia-damper-spring model of tuned compressor and turbine 

                      bladed disk, (i=1 to no. of stages=19, j=1 to no. of blades in each  stage = nb) 

Jmi
θ̈i = −KSi

(θi − θi+1) − CSi
(θ̇i − θ̇i+1) − nbi

Kbi
(θi − θbi

) − CBi
θ̇i                            (2)                                  

[i=1] 

Jbi
θ̈bi

= −Kbi
(θbi

− θi) − Cfi
θ̇bi

                                                                     [i=1 to 19] 

           (Including equations 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39) 

  Jmi+1
θ̈i+1 = −KSi

(θi+1 − θi) − KSi+1
(θi+1 − θi+2) − CSi

(θ̇i+1 − θ̇i) 

  −CSi+1
(θ̇i+1 − θ̇i+2) − nbi+1

Kbi+1
(θi+1 − θbi+1

)                                             [i=1 to 17]  

                     (Including equations 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36) 

 Jmi+1
θ̈i+1 = −KSi

(θi+1 − θi) − KSi+1
(θi+1 − θi+2) − CSi

(θi+1 − θi) 

                        − CSi+1
(θ̇i+1 − θ̇i+2) − nbi+1

Kbi+1
(θi+1 − θbi+1

) − CBi
θ̇i     [i=18]           (38) 

JmP
θ̈p = −KS19

(θP − θ19) − CS19
(θ̇P − θ̇g) − (CB3

+ CB4
)θ̇P − CFP

(θ̇P − θ̇g) − Td  (40) 

 Jmg
θ̈g = −KS20

(θg − θ20) − CS20
(θ̇g − θ̇20) + CFg

(θ̇g − θ̇P)  

                   −(CB5
+ CB6

+ CB7
+ CB8

)θ̇g + SR. Td                                         (41) 

Jm20
θ̈20 = −KS20

(θ20 − θg) − KS21
(θ20 − θ21) − CS20

(θ̇20 − θ̇g)  

                   −CS21
(θ̇20 − θ̇21) − (CB9

+ CB10
)θ̇20 − Ceθ̇20 − Keθ20                               (42) 

Jm21
θ̈21 = −KS21

(θ21 − θ20) − CS21
(θ̇21 − θ̇20)                                                           (43) 
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Where Td  is the dynamic torque induced in gears, nb is the number of blades in each stage, 

Kbi
  is the torsional stiffness of any turbine or compressor blade, and SR is the gear ratio.  

The comprehensive model of the system including the electrical network 

interconnection to the system which is linked by an equivalent electrical stiffness is presented 

schematically in figure (3).  

Figure (3): Mass-damping-spring model of the turbo-generator unit 

Effect of Backlash 

Backlash is commonly found in gears and similar mechanical linkages where the 

coupling is not perfect or continuously provided. In a majority of situation, backlash induces 

additional dynamic forces. 

 

The dynamic equations of a gear system, during meshing, depends on four situations, as 

illustrated in figure (4) :    

(i) If     θP − θg > Bθ     then   Td = Kg(θP − θg) + Cg(θ̇P − θ̇g)                      (44) 

(ii) If     Bθ > θP − θg > −Bθ  then  Td = 0.0  (loss of contact)                         (45) 

This occurs between points 2 and 3. 

(iii) If     θg − θP > Bθ  then   Td = Kg(θg − θP) + Cg(θ̇g − θ̇P)                         (46) 

This occurs between points 3 and 4. 

(iv) If     θP − θg = Bθ   or  θP − θg = −Bθ  then  Td = 0.0  (loss of contact)   (47)                                                                                                   

Where Bθ  is the backlash.  
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These four situations are considered and 

introduced in the dynamic equations of 

pinion and gear in the present multi mass-

spring-damper model, hence in the 

simulation block diagram of the system. 

                                    

 

 

Figure (4): Gear teeth backlash model 

 

 

 

 

     

In developing equations (2) to (43), several assumptions are employed: 

(1) Mistuning (variations in the dynamic properties of the blades) is ignored. 

(2) Each blade of compressor and turbine is considered as one mass, flexibly attached to 

the shaft segment. 

(3)  Blades motion is independent of each other in each stage (i.e., no coupling between 

blades along the shaft exists). 

(4) The shaft of the unit does not actually constitute a perfectly rigid connection between 

different components. As a good approximation, the rotor of the single component is 

divided into a number of segments. Each segment considered as a rigid lumped mass, 

torsionally connected through elastic elements of negligible masses. Each stage of 

turbine and compressor is connected to  nb   blades through elastic elements also. The 

whole system (mechanical part including compressor and turbine blades, gear system) 

and the (electrical part including generator and exciter) produces 23 masses connected 

by 22 springs. In turn, each of compressor and turbine stages connected to nb blades 

by nsp springs for each stage. 

(5) Low contact gear ratio is used in the analysis. Specifically, the contact ratio is taken 

between one and two.  

Estimation of Stiffness and Damping Coefficients  

The following analysis is used to determine the linear or linearized estimation of the 

stiffness and damping coefficients appeared in the primarily derived equations (2) to (43). 

Stiffness Coefficients 

1. Shaft Segment Stiffness Coefficients ( 𝐊𝐒 ) 

Generally, for a stepped shaft segment having any number of steps, the equivalent 

stiffness (where the diameter and length of each step is not the same) is represented 

equivalently by: 

1

(KS)eq
=

1

KS1

+
1

KS2

+
1

KS3

+ ⋯ +
1

KSnst

                                                                                (48)  
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  The shaft segment stiffness can be given by the following standard expression: 

    KS =
JD.G

L
      (N.m/rad)                                                                                          (49) 

Then,  

   
1

(KS)eq
=

1

JD1.G L1⁄
+

1

JD1.G L1⁄
+

1

JD3.G L3⁄
+ ⋯ +

1

JDnst
.G Lnst

⁄
                                              (50) 

 

Or 

   (KS)eq =
1

32

πG
[

L1

D1
4+

L2

D2
4+

L3

D3
4+⋯+

Lnst

Dnst
4 ]

                                                                                      (51) 

 

     Where nst is the number of steps in shaft segment, L is the segment length, J is the polar 

moment of inertia of segment section, G is the torsional rigidity of segment material, and D is 

the segment diameter.   

2. Gear or Mesh Stiffness (Kg) 

Reducing the speed of the turbine in the unit to that of the generator requires a gear 

system. Motion and torque transmission is achieved by permanent teeth contact. However, 

this arrangement is to some extent, elastic. 

Yang and sun [7] derived an approximate, linear expression for the elastic force 

between single pair of steel gears teeth along common tangent to base circles as: 

 

   F =
πELδ

4(1−ν2)
= Kg. δ                                                                                                       (52) 

Where  δ is the magnitude of the interpenetration between two meshing teeth, or relative 

displacement between two teeth, L is the thickness of the teeth (face width), E is the Young’s 

modulus of the gear material, ν  is the Poisson’s ratio of the gear material, Kg is the linear 

mesh stiffness of the contact (N/m). 

This expression has been derived according to hertzian law for elastic materials.  

An approximated, linear expression for the elastic torque between the same pair of gears 

teeth has been obtained as compression between two isotropic elastic bodies. 

T =
πELRbavg

2 θ

4(1−ν2)
= Kg

́ . θ                                                                                                       (53) 

Where Rbavg
 is the average radius of base circles of two gears, θ is the relative gear 

displacement between two teeth, and Kg
́  is the angular mesh stiffness (N.m/rad). 

Variable Mesh Stiffness 

  Although, the stiffness during the contact of a single pair of teeth is considered as a 

constant, equation (53). It cannot be guaranteed that this will still be held for the entire gear 

motion. [7]. The stiffness of contact will change with the number of meshing teeth gear pairs 

during motion. This number alternates between one and two. Figure (5) shows a pair of spur 
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gears with involute profile in 

mesh. Assuming that, this pair 

of teeth comes with contact 

starting at point B2 and 

separates at point B1 , where B2 

and B1 are both on the common 

normal line. Three periods exist 

in terms of the number of the 

contact teeth pairs (contact 

ratio): 

                                                                                         

(A) From B2 to A2 

In this region the 

preceding pair of teeth are still in contact, so we have two pairs of teeth in contact. 

Since the area of contact is doubled, it is reasonably, believed that the stiffness of 

hertzian contact ratio doubled. In this case, the stiffness is considered to be twice of 

that given by equation (53). i.e.  

Kg
́ =

πELRbavg
2

2(1−ν2)
                                                                                                        (54) 

 

(B)      From  𝐴2 to  𝐴1 

In this region, the preceding pair of teeth has already separated, yet the succeeding 

pair has not come in contact. Therefore, we have a single pair of teeth in touch. In this 

case, the stiffness (Kg ) given in equation (53) holds. 

(C) From  A1 to  B2 

This region is the same as that in situation A, except that this pair of teeth becomes the 

new preceding pair, and another 

new pair of teeth starts contact in 

the region of  B2 A2. 

In fact, three regions of contact 

exist. Figure (6) illustrates the 

fluctuating characteristics of these 

three regions of meshing. 

 

Here, for simplicity, the average 

value of this stiffness is used. It is taken as 

the sum of the discrete tooth stiffness values 

over mesh cycle divided by the number of 

mesh positions in the cycle [8, 9], i.e., 

(Kg
́ )

avg
=

1

3
[(Kg

́ )
1

+ (Kg
́ )

2
+ (Kg

́ )
3

] =
5 π E L Rbavg

2

12(1−ν2)
                                                       (55) 

 

Figure (5): Geometrical relationships of 

teeth contact [7] 

 

Figure (6): Alternation of the number 
of contact pairs [7] 
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3. Electrical Stiffness  (Ke) 

 

When the energy conversion from mechanical to electrical form or the reverse takes 

place at a constant speed of the rotor in any synchronous machine (generator or motor) [10], 

The electrical torque: 

  

(Tel)= - the mechanical torque (Tme) 

 

         The negative sign indicates that when   Tel   is positive, Tme is negative    (motor mode) 

and when   Tel   is negative, Tme is positive    (generator mode) 

When the speed rises, the instantaneous electrical torque Tel and the instantaneous 

mechanical torque Tme are related as:  

  Jgen
dωr

dt
= Tme − Tel = Ta′                                                          (Generator mode) 

Where  Jgen is the is mass moment of inertia of the generator rotor, ωr is the angular speed of 

the generator rotor, Ta′ is the accelerating torque. 

 

Cleary, when the generator is accelerating, the mechanica l torque Tme should be larger 

than the electrical torque Tel. On the other hand, the power developed by the generator per 

phase is given by, [10]: 

 

   Pdev =
Vfi.Vt

XSy
sin ϕ = Tel. ωr                                                                                             (56) 

 

Where Vfi is the induced or internal voltage per phase, Vt is the terminal voltage per phase, 

XSy  is the synchronous reactance per phase, and ϕ is the power angle between Vo and Vt . 

Hence, 

  Tel =
Vfi.Vt.sinϕ

XSy.ωr
                                                                                                                  (57) 

This expression represents the electrical torque in its non-linear form. 

The following approximate analysis has been done by Nasar and Unnewehr [10], to 

evaluate the electrical stiffness (Ke), and it will be adopted in this work. 

 

For two-pole, cylindrical-rotor, and assuming that the frequency of mechanical 

oscillations is small, so that the steady-state power angle characteristics can be used, the 

equation of rotational motion of this synchronous generator is: 

 Jgen θ̈r = Tme − Tel                                                                                                           (58) 

 

Where θr represents the angular displacement of the generator rotor. 

 

         Let the changes in θr, Tel and Tme caused by sudden load changes be represented by 

∆θr, ∆Tel and ∆Tme respectively, so that equation (58) modifies to the following: 

  (Tgen  
d2

dt2)∆θr = ∆Tme − ∆Tel                                                                                        (59) 

 

        The change in the electrical torque, from equation (57), is the following, 

  ∆Tel =
Vfi Vt 

Xsy ωr 
sin[∆ϕ]                                                                                                    (60)    
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Where Tel is the electrical, electromagnetic or air gap torque, and  ωr is the rotational speed of 

the generator rotor = synchronous speed or electrical frequency under steady state conditions, 

ωr = πNr/30 (rad/sec).  

It may be noticed that for constant voltages, only angle (ϕ) changes when load changes. 

 

For small variations sin[∆ϕ] ≅ ∆ϕ , therefore, equation (60) becomes: 

∆Tel = Ke ∆ϕ                                                                                                                  (61) 

Where 

 Ke =
Vfi Vt

Xsy ωr
                                                                                                                     (62)  

        Which represent the electrical stiffness per phase. For 3-phase operation, the electrical 

stiffness is given by: 

Ke = 3
Vfi Vt

Xsy ωr
   (N.

m

rad
)                                                                                                   (63) 

 

Estimation of Damping Coefficients 

1. Material Damping (𝐂𝐬) 

 

Materials damping capacity is defined as “internal 

hysteresis” which is the property of a material which 

produces internal dissipation of energy under cyclic 

deformation [11].  

The internal damping capacity of materials can be obtained 

from the stress-strain diagram shown in figure (6). 

                                                                                                     

             The complete diagram form a closed loop the area 

of which represents the energy dissipated in overcoming the internal friction of the material. 

This energy appears largely in the form of heat.     

             Damping in the elastic shaft elements between rigid lumped masses is due to the shaft 

material. Defining the critical damping (Cc) and damping ratio (ζs) as: 

Cc = 2 Jm ωn                                                                                                              (64)  

And    ζs =
Cs

Cc
                                                                                                              (65) 

Where  Cs is the material damping coefficient. 

Therefore,           Cs = 2 ζs Jm ωn =  2 ζs Jm  √
Ks

Jm
       

This yields,   

 Cs = 2 ζs √KS  Jm                                                                                                          (66)      

Figure (6): Hysteresis loop [11] 
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          Shaft material damping can be 

estimated by considering that the 

damping exist between any two 

adjacent segments in a manner similar 

to that connecting two inertias as 

shown in figure (7). The damping 

coefficient can be approximated by 

[12]: 

  CS = 2  ζs √KS (Jmeff
)S                                                                                               (67( 

        Where   (Jmeff
)S  is effective inertia of the two adjacent masses at two ends of the shaft 

segment that can be calculated as: 

Jmeff
=

Jm1  Jm2

Jm1+ Jm2

                                                                                                              (68( 

        Substitute equation (68) into equation (67) to get the general expression of the material 

damping coefficient: 

CS = 2  ζs √
Jm1  Jm2

Jm1+ Jm2

                                                                                                      (69( 

Where  ζ𝑠  is the damping ratio of shaft material. 

Experiments have shown that ζs ranges between 0.005 to 0.075 for steels [7]. 

 

2. Mesh Damping or Gear Damping  (𝐂𝐠) 

        When two elastic bodies impact each other, most of the elastic strain energy is restored, 

but a fraction of which will be dissipated in the form of heat due to random molecular 

vibration. This energy loss can be considered as a damping effect during impact [13]. 

Generally, the damping coefficient is represented by (equation 67): 

CS = 2 ζ √K J 
         Then, the damping coefficient of any two meshing gears due to impact between their 

teeth can be represented by: 

Cg = 2 ζg√(Kg′)avg(Jmeff
)g                                                                                              (70) 

Where ζg is the is the damping ratio of gear material, (Kg′)avg is the gear or mesh stiffness, 

(Jmeff
)g is the effective inertia of two meshing gears with speed ratio (SR). 

(Jmeff
)gears  can be expressed by the following expression: 

(Jmeff
)gears =

Jmp+Jmg

(SR)2.Jmp+Jmg
                                                                                                  (71) 

Therefore,     

 Cg = 2 ζg (Kg′)avg   
Jmp+Jmg

(SR)2 . Jmp+Jmg
                                                                                      (72) 

Where Jmp  and  Jmg  is the polar moment of inertia of pinion and gear respectively  

Figure (7): Two inertias with stiffness and 

damping 
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Measurements have shown that, ζg ranges between 0.03 to 0.17 [14, 15].  

3. Sliding Friction Damping in Pinion and Gear  (𝐂𝐅𝐩
, 𝐂𝐅𝐠

) 

This type of relative damping occurs due to frictional forces of the driving and driven 

gears. Figure (8) shows the engagement of pinion and gear teeth. The normal force Fnor is 

acted along the common tangent to base circles and the friction force FF is acted along the 

common tangent to teeth which is perpendicular to base circles common tangent. Using the 

following relationship: 

FF = μ Fnor                                                                                                                         (73) 

        The friction torques along the common tangent to pitch circles are,  

(TF)pinion =  FF sin ψ Rp =  μ Fnor   sin ψ Rp                                                                  (74) 

 

(TF)gear    =  FF sin ψ Rg =  μ Fnor   sin ψ Rg                                                                   (75)               

 

Where ψ is the pressure angle, Rp and Rg are the pitch radii of pinion and gear respectively   

 

        The frictional force losses 

during the engagement of two gears 

arise from two types of relative 

motion, namely, sliding and rolling 

of involute teeth with respect to each 

other. In all other positions, 

however, the meshing action is a 

combination of rolling and sliding. 

Since rolling is considerably smaller 

than the sliding resistance, its 

contribution to the total friction is 

usually ignored [15, 16, and 17].  

 

         Sliding friction in gear mesh 

has an effect on the system 

dynamics as a source of energy 

dissipation [18], in other words, it 

can influence the system with its 

damping characteristics [19]. 

         Buckingham [20] has 

developed a semi-empirical formula 

for the average friction coefficient ( 

μavg) as: 

 

 

  μavg = 0.05 e−0.125 VS + 0.002 √(VS)avg                                                                     (76) 

Figure (8): Dynamic model of a gear pair  

operating with sliding friction 
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         Where (VS)avg is the average sliding velocity in (ft/min), alternatively, Buckingham 

formula stated earlier can be rewritten using SI units, when the average sliding velocity (𝑉𝑆) 

in (m/s) as: 

μavg = 0.028 √(VS)avg                                                                                                    (77) 

   The losses in gearing due to relative rolling motion, by using this approach, were 

completely disregarded. Examples on this approach have been presented in the literature     

[21, 22].   

 

    Now, the average sliding velocity is given by the following expression: 

(VS)avg =
(VSapr+VSrec)

2
                                                                                                   (78) 

 

Where VSapr  is the approach sliding velocity, and it is given by: 

VSapr = (ωp + ωg). AP                                                                                                 (79) 

 

Also  VSrec  is the recess sliding velocity: 

  VSrec = (ωp + ωg). PB                                                                                               (80) 

 

         After substituting equation (79) and (80) into equation (78), the average sliding velocity 

can be obtained in terms of path of contact (AB) and the average angular velocity (ωavg) as: 

 

(VS)avg = AB. (ωavg)                                                                                                    (81) 

Where 

AB=AP+PB                                                                                                                   (82) 

And      

ωavg =
ωp+ωg

2
                                                                                                                (83)  

 

Where ωp, ωg are the angular velocities of pinion and gear respectively, AP is the path of 

approach, and PB is the path of recess. 

 

Substituting equation (81) into equation (77) to get: 

  μavg = 0.028 √AB ωavg

1

2                                                                                              (84) 

 

           The frictional torques (TFp
and TFg

) are obtained by substituting equation (81) into 

equations (74 and 75) as follows: 

 

TFp
= [0.028√AB ωavg

1

2 ] Fnor RpsinΨ                                                                           (85) 

  

  TFg
= [0.028√AB ωavg

1

2 ] Fnor RgsinΨ                                                                         (86) 

         Since Fnor , sinΨ, Rp , and Rg are constants, the friction torques TFp
 and  TFg

 become 

only functions of the average angular velocities (ωp and ωg). 
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Let 

K1 =  Fnor Rp sinψ                                                                                                      (87) 

 

K2 =  Fnor  Rg sinΨ                                                                                                     (88) 

 

Then equations (85 and 86) can be written as: 

 

TFp
= K1 [0.028√AB ωavg

1

2 ]                                                                                       (89) 

 

TFg
 = K2 [0.028√AB ωavg

1

2 ]                                                                                      (90) 

 

These expressions are non-linear form of   TFp
   and  TFg

 . The linearization of these 

expressions gives the damping coefficients of frictional moments in pinion and gear (CFp
 and  

CFg
 ) as following: 

  ∆TFp
= |

∂ TFp

∂ ωavg
|

i

 ∆ ωavg = CFp
 ∆ ωavg                                                                   (91) 

Also 

∆TFg
= |

∂ TFg

∂ ωavg
|

i

 ∆ ωavg = CFg
 ∆ ωavg                                                                     (92)    

Then, 

CFp
= |

∂ TFp

∂ ωavg
|

i

   ,   CFg
= |

∂ TFg

∂ ωavg
|

i

   

                         
         Where CFp

 and CFg
 are constants represents the slopes of the curves of TFp

 versus  ωavg 

and TFg
 versus  ωavg at the reference positions. 

Therefore, 

  CFp
= K1 [

0.014 √AB

√ωavg
]           N.

m

rad
/sec                                   (93) 

 

CFg
= K2 [

0.014 √AB

√ωavg
]           N.

m

rad
/sec                                      (94) 

 

4. Bearing Oil film Damping Coefficient (CB) 

                                                               

          The turbo-generator unit has ten journal bearings. Journal 

bearings or fluid film bearings play a significant role in the 

vibrational behavior of the rotor, both laterally and torsionally. 

Generally, the frictional forces in journal bearing may be 

obtained from fluid shear stresses at journal and bearing 

surfaces, i.e., for Z=0 and Z=h respectively as shown in figure 

(9). 

                                                                                                            Figure (9): Journal bearing 
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             In steady running, the total drag or frictional force for both surfaces due to rotation is 

given by [23, 24]:  

   FB =
CL  ϵ W 

2 R
sin φ +

2 π ξ U R LB

(1−ϵ2)1/2 CL
                                                                                     (95) 

           The above relationship consists of two parts, the first part arises from the offset 

between the center of the shaft and that of the bearing. The second part is based on Newtonian 

friction.  

Where w is the load on the bearing, ϵ is the bearing eccentricity ratio (ϵ = e/CL),  e is the 

eccentricity, LB is the bearing length, CL is the radial clearance, φ is the attitude angle of the 

bearing, R is the bearing radius, and ξ is the absolute viscosity of the bearing oil, figure (9). 

Frictional torque = frictional force*journal radius. This gives,                                                

  TB = FB. R =
CL  ϵ W 

2 R
sin φ +

2 π ξ U R LB

(1−ϵ2)1/2 CL
                                                                        (96) 

But the linear velocity is  U = ω. R  . 

Therefore, TB =
CL  ϵ W 

2 R
sin φ +

2 π ξ U R3 LB

(1−ϵ2)1/2 CL
                                                                     (97) 

         The first part of equation (97) is independent on the speed of rotation (ω). The frictional 

torque represents a source of dissipation of energy and hence provides a damping action. This 

equation is the non-linear form of that frictional or damping torque. The oil film coefficient is 

obtained by linearizing this equation as the following: 

∆TB = |
∂ TB

∂ ω
|

i
∆ω = CB ∆ω                                                                                              (98) 

Where, CB is a constant represents the slope of the curve of  TB versus  ω at the reference 

position. 

Then   CB =
2 π ξ U R3 LB

(1−ϵ2)1/2 CL
                                                                                                   (99) 

5. Electrical Damping (𝐂𝐞) 

          Alternating current generators (alternators) and motors have practically no-self damping 

capacity. The damping of an alternator is due to current induced in the pole faces of the rotor 

by the movement of the flux to and fro across the pole face during oscillation. In certain 

circumstances, this damping can become negative, in which case the system will become 

unstable resulting in a large growth of oscillatory amplitude if there is insufficient positive 

damping in the system as a whole. It is usual, therefore, to supplement the damping 

characteristic of the machine by special damper winding, embedded in the pole faces. The 

lower is the resistance of these windings the greater is their damping effect. These windings 

are similar to squirrel cage induction motor winding and sometimes called amortisseur [11].  

As approximate expression for the specific damping, Wilson [11] has derived torque of 

an alternating current machine fitted with damper windings as follows: 

 

In general, the driving torque is proportional to some power of the rotational velocity, i.e.,  

                          

Tdr = K ωZ                                                                                                                        (100)  
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Where Tdr is the driving torque (N.m), ω is the rotational velocity (rad/sec) and (K, Z) are 

constants. 

 

         For small variations of rotational speed, the damping torque per unit angular velocity 

(i.e. damping coefficient Ce) is the instantaneous slope of the torque-speed curve at the point 

of question (reference point), 

Ce = damping torque/unit velocity   = 
d

dω
 (Tdr) = Z KωZ−1                                           (101) 

 

Substituting the constant, ( K =
Tdr

ωZ  ) from equation (100) and after some manipulation we 

have the damping coefficient as: 

Ce = Z
Tdr 

ωZ  ωZ−1 = Z
Tdr

ω
=

2 Tdr

2πN/60
   

Or    Ce =
9.5 Z Tdr

N
                                                                                                            (102) 

           It may be noticed that since the damping torque is proportional to velocity, the 

damping of viscous nature. The value of constant Z  in equation (103), in practice, is generally 

greater than one, i.e., more than one percent increase of torque is required to produce one 

percent increase in speed. The actual value of Z depends on the torque/speed characteristics of 

the individual machine. 

The electrical damping coefficient of an alternator or synchronous generator can be 

estimated from the general equation (103) as: 

Ce =
9.55 Z Tgen

Ngen
  

Where Tgen is the torque driving the generator and Ngen is the generator rpm. 

 

         For  normal machines, it may be assumed that 13%  to  14% increase of torque is 

required to produce 1% change of speed, i.e. Z= 13 to 14 [11], Taking Z = 13.5,  therefore, 

 

  Ce =
129 Tgen

Ngen
                                                                                                                   (103) 

 

6. Fluid Damping or Velocity-Squared Damping (𝐂𝐟) 

 

        Velocity-squared damping (non-viscous damping) is commonly used to describe the 

damping mechanism of a system vibrating in a fluid medium. The damping force is assumed 

to be proportional to the square of the velocity and can be approximated by [6]: 

 

Fda = [
CDrag    ρ  APr

2
] ẏ2                                                                                                      (104) 

 

 Where 𝑦̇ is the velocity of vibrating body relative to fluid medium (m/s), CDrag  is the drag 

coefficient (dimensionless), APr is the projected area of body perpendicular to 𝑦̇ (m²), and ρ is 

the mass density of fluid (kg/m³). 

 

        The relationship y = rmn θb and its derivatives can be substituted into equation (104) to 

obtain the damping force in terms of the independent coordinate θ as: 
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Fda = [
CDrag    ρ  APr

2
] rmn

2   θ̇b
2

                                                                                          (105) 

 

Where rmn is the mean radius of a single compressor or turbine blade, and θb is the angular 

displacement of blade center relative to shaft center. 

 

        The equivalent-viscous damping coefficient or fluid damping coefficient (CF) can be 

represented by the following relationship: 

 

C = Cf =
4

3π
CDrag   ρ  APr rmn

3 |Θ| ωn 

Or                 

 Cf =
4

3π
CDrag   ρ  APr rmn

3 |Θ| √
Kb

Jb
                                                                                 (106) 

 

Where |Θ| is the peak angular amplitude of vibration of blade at resonance (rad), Kb is the 

blade stiffness (N.m/rad), and Jb is polar mass moment of inertia of the blade (kg.m²). 

 

        Analysis of engine test results and rig investigations has shown that the mechanical 

damping (internal material damping) of the blade is small, and that the damping is mainly 

aerodynamic (fluid damping) under a constant excitation force. The angular peak amplitude at 

resonance  |Θ|  is approximately equal to thirty times the corresponding deflection due to 

static load by dead weight of blade [25].  

 

Results 
 

        The present work deals with the simulation of the angular motion dynamics of the turbo-

generator unit. Lumped mass system with the inertias of the main parts and the blades and the 

dynamic coefficients (stiffness and damping) has been fully predicted. In the present study, 

the axial flow compressor consists of seventeenth stages, which is the actual number of stages 

in the compressor of any of the twelve turbo-generator units under study of Mosul gas turbine 

power station. Also the turbine, which consists of two stages, the pinion, gear and generator 

are included so that the integral parts of the unit are simulated. To perform the calculations, a 

basic language computer program is developed and the actual data taken from the station 

catalogues as listed in table (1), are used in the program. 

 

The data presented in table (2) are inserted into the computer program. These are obtained 

either from the available manufacturers data of the units or by direct measurement 

accomplished on each part in the absence of the foregoing information. 
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      Table (1): Summary of the data of the twenty-three lumped mass system of the  

                      turbo-generator unit 
 

No. 

Lumped mass name Mass 

(kg) 

Number of 

blades 

Approximate 

blade thickness 

( mm ) 

Approximate                                                                             

blade width 

( mm ) 

Blade 

height 

( mm ) 

1 Compressor stage 1 44 28 6 140 208 

2 Compressor stage 2 23 32 4.5 110 185 

3 Compressor stage 3 17.3 36 4 105 164 

4 Compressor stage 4 15.4 40 4 100 144 

5 Compressor stage 5 11.9 44 4 78 128 

6 Compressor stage 6 12.6 49 4 70 115 

7 Compressor stage 7 12.6 54 4 70 115 

8 Compressor stage 8 12.6 59 4 70 115 

9 Compressor stage 9 12.6 64 4 70 115 

10 Compressor stage 10 12.6 69 4 70 115 

11 Compressor stage 11 12.6 75 4 70 115 

12 Compressor stage 12 12.6 81 4 70 115 

13 Compressor stage 13 12.6 87 4 70 115 

14 Compressor stage 14 12.6 94 4 70 115 

15 Compressor stage 15 12.6 101 4 70 115 

16 Compressor stage 16 12.6 108 4 70 115 

17 Compressor stage 17 12.6 115 4 70 115 

18 Turbine stage 1 82.2 90 18 60 95 

19 Turbine stage 2 271.1 120 18 60 235 

20 Pinion 570     

21 Gear 1568     

22 Generator 10877     

23 Exciter 1221     

          

     Table (2): Actual system specifications taken from station references 
No. Item Symbol Values Units 

1 Compressor shaft outer diameter d 700 mm 

2 Rotational speed of gas turbine shaft  5100 rpm 

3 Rotational speed of generator shaft  3000 rpm 

4 Speed ratio SR 1.7  

5 Pinion pitch circle diameter 𝐝𝐏 475 mm 

6 Gear pitch circle diameter 𝐝𝐠 808 mm 

7 Gear face width  410 mm 

8 Number of pinion teeth  58  

9 Number of gear teeth  99  

10 Module m 8 mm 

11 Rotor generator diameter 𝐝𝐠𝐞𝐧 764 mm 

12 Rotor exciter diameter 𝐃𝐞𝐱𝐜 600 mm 

13 Rotor exciter length 𝐋𝐞𝐱𝐜 550 mm 

14 Poissonsʹs ratio 𝝂 0.3  

15 Absolute viscosity of bearing oil 𝜉 0.0198171 N.s/m² 

16 Rated power  20 MW 

17 Terminal voltage 𝐕𝐭 11000  (L-L) Volt 

18 Induced voltage / phase 𝐄𝐟𝐢 120 Volt 

19 Stator resistance / phase R 0.0122 Ohm 

20 Modulus of elasticity of Ni-Cr steel E 208 GPa 

21 Modulus of rigidity of Ni-Cr steel G 82 GPa 

22 1 per unit torque 1 P.U. 63622 N.M 
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         A summary of the calculation results are given in table (3) and (4). The calculations 

include effective polar mass moment of inertia of each lumped mass and blade, and the 

estimated values of dynamic coefficients (both stiffness and damping coefficients). In order to 

estimate the torsional natural frequencies and mode shapes, the system Eigen values and 

Eigen vectors are determined depending on the adopted model. The turbo-generator rotor 

system as specified has 42 degrees of freedom. By using the state-space technique for the 

solution of system equations, the 42 ordinary second order linear differential equations 

becomes 84 ordinary first order linear differential equations. 

 

      Table (3): Summary of the first set of results of the twenty-three shaft masses used 

                       in the Simulation 
 

No. 

 

Lumped mass name 

Blade stiffness 

(N.m/rad) 

Mass moment of 

inertia of lumped 

mass ( kg.m²) 

Mass moment of 

inertia of blade ( 

kg.m²) 

1 Compressor stage 1 10758 41.12 1.978 *10²־ 

2 Compressor stage 2 4508 30.41 8.2     *10³־ 

3 Compressor stage 3 3846 28.29 4.85  *10³־ 

4 Compressor stage 4 4751 26.7 3.126*10³־ 

5 Compressor stage 5 4690 20.64 1.713*10³־ 

6 Compressor stage 6 5214 18.45 1.115*10³־ 

7 Compressor stage 7 5214 18.67 1.115*10³־ 

8 Compressor stage 8 5214 18.92 1.115*10³־ 

9 Compressor stage 9 5214 19.15 1.115*10³־ 

10 Compressor stage 10 5214 19.38 1.115*10³־ 

11 Compressor stage 11 5214 19.66 1.115*10³־ 

12 Compressor stage 12 5214 19.94 1.115*10³־ 

13 Compressor stage 13 5214 20.22 1.115*10³־ 

14 Compressor stage 14 5214 20.55 1.115*10³־ 

15 Compressor stage 15 5214 20.87 1.115*10³־ 

16 Compressor stage 16 5214 21.2 1.115*10³־ 

17 Compressor stage 17 5214 21.52 1.115*10³־ 

18 Turbine stage 1 596783 32.78 0.364*10²־ 

19 Turbine stage 2 97528 79 4.1    *10²־ 

20 Pinion  16.1  

21 Gear  134.78  

22 Generator  832.3  

23 Exciter  54.9  

 
        Also, the eigen vectors (natural mode shapes) corresponding only to the modal free 
undamped eigen values are shown in figure (10) for the unloading case and figure (11) for the 
loading case.  
         Four cases were studied, these are free undamped and damped vibration when the load 
is connected and disconnected from the generator for each case. 
         The entire results of this analysis show 42 eigen values in the form of pairs of 
complex conjugate. The first group of dominant values (the pairs of system modes, or the 
first three undamped torsional natural frequencies) of the eigen values are listed in table 
(5).The second group of the dominant values (first three damped torsional natural frequencies) 
are listed in table (6). The consideration of dominancy were based on the examining the 
obtained numerical values of the eigen values. It is noticed that the first three eigen values, in 
particular the first one, have eigen sensible differences for the cases considered. On the other 
hand, their corresponding natural frequencies are less than the speed of rotation when the unit 
is in steady operation, which suggest that their values are critical speeds and has to be 
carefully mounted in the running up and shutting down of the unit. The fourth eigen value and 
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the rest indicates values higher than the speed of rotation, for example, 𝜆4, indicates a natural 
frequency of about 738 (rad/sec) for all the cases considered. This frequency is even higher 
than the second harmonics frequency of the self induced excitation that may appears in the 
generator with steady loading conditions, i.e., [738>2(314)] rad/sec. 
 

     Table (4): Summary of the second set of the results of twenty-two shaft segments 

                      dynamic coefficients used in the simulation   
 

 

 

 

No. 

 

 

Segment 

 

Location 

 

or 

 

name 

Segment 

stiffness 

 

 

𝐊𝐒 

 

 

 

(N.m/rad/s) 

Material 

damping 

coefficient 

 

𝐂𝐒 

 

 

 

(N.m/rad/s) 

Bearing oil 

damping 

coefficient 

 

𝐂𝐁 

 

 

 

(N.m/rad/s) 

Electrical 

stiffness and 

damping 

coefficients 

          𝐊𝐒 

(N.m/rad) 

and 

𝐂𝐞 

(N.m/rad/s) 

Gear 

damping 

coefficient 

𝐂𝐠 

and sliding 

friction 

damping  

coefficients 

𝐂𝐅𝐩and 𝐂𝐅𝐠 

(N.m/rad/s) 

Fluid 

damping 

coefficient 

 

 

𝐂𝐟 

 

 

(N.m/rad/s) 

1 1-2 1.1 * 10¹¹ 99986 0.164  

13237 

 

 

1.23 * 10¹¹ 

0.5987 

2 2-3 1.1 * 10¹¹ 93373 0.164 0.4394 

3 3-4 1.1 * 10¹¹ 91173 0.19 0.39 

4 4-5 1.1 * 10¹¹ 84331 0.19  

3001 

 

1.49 

 

0.3624 

5 5-6 1.1 * 10¹¹ 79198 0.425 0.296 

6 6-7 1.15* 10¹¹ 77141 0.425 0.3323 

7 7-8 1.15* 10¹¹ 77141 0.236   

2.53 

0.3667 

8 8-9 1.15* 10¹¹ 77141 0.236  0.4032 

9 9-10 1.15* 10¹¹ 77141 0.486  0.4417 

10 10-11 1.15* 10¹¹ 77141 0.486   0.4824 

11 11-12 1.15* 10¹¹ 77141    0.5252 

12 12-13 1.15* 10¹¹ 77141    0.5703 

13 13-14 1.15* 10¹¹ 77141    0.6176 

14 14-15 1.15* 10¹¹ 77141    0.6671 

15 15-16 1.15* 10¹¹ 77141    0.719 

16 16-17 1.15* 10¹¹ 77141    0.7732 

17 17-18 3.7* 10⁸ 4205    0.8298 

18 18-19 1.2* 10¹⁰ 23142    15.74 

19 19-pinion 3.9*10⁶ 431    24.8 

20 Pinion-

gear 

1.23* 10¹¹ 61445     

21 Gear-

generator 

5.25*10⁶ 1973     

22 Generator- 

exciter 

4.032*10⁷ 3646     

 

                      Table (5): Dominant undamped torsional natural frequencies 
 

Generator condition 

 

Dominant modal free undamped eigen values 

(torsional natural frequencies) 

( rad/sec ) 

 

Unloading 

 

               𝝀𝟏 = 0 ± 8.0053 i 

               𝝀𝟐 = 0 ± 90.468 i 

               𝝀𝟑 = 0 ± 285.83 i 

 

Loading 

               𝝀𝟏 = 0 ± 13.116 i 

               𝝀𝟐 = 0 ± 90.936 i 

               𝝀𝟑 = 0 ± 285.84 i 
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Table (6):  Dominant damped torsional natural frequencies 
Generator 

condition 

Dominant modal free damped eigen 

values (torsional damped natural 

frequencies) ( rad/sec ) 

Modal damping 

values 

( ζ ) 

 

Unloading 

 

       𝝀𝟏 = -6.8088 ± 4.3700 i 0.8400 

       𝝀𝟐 = -10.846 ± 88.932 i 0.1210 

       𝝀𝟑 = -10.267 ± 285.60 i 0.0360 

 

Loading 

       𝝀𝟏 = -6.9639 ± 11.289 i 0.5250 

       𝝀𝟐 = -10.960 ± 89.399 i 0.1217 

       𝝀𝟑 = -10.267 ± 285.61 i 0.0359 

 

 

Discussion  and Conclusions  
 

Stiffness Coefficients 

 

        It is known that the values of shaft stiffness (KS) depend naturally on segment shaft 

diameter and length (equation 49). This interpret the equivalent different values of (KS) due to 

different shaft steps of different length and diameter. 

 

        The value of gear stiffness (Kg) mainly depends upon face width and average base radius 

of the two mating gears considering the same material for pinion and gear. It’s estimated 

value is seems to be of the same order of shaft stiffness (KS). 

 

        On the other hand, the electrical stiffness (Ke) or as sometimes so-called synchronizing 

torque depends, purely, on electrical parameters, namely, terminal voltage, excitation voltage, 

synchronous reactance and rotational speed of the generator. It’s value is relatively small 

compared with the mechanical stiffness Ke. The effect of electrical stiffness is introduced in 

system equations only when the generator is connected with electrical network, i.e., when the 

generator is in operation. 

 

Damping Coefficients 

 

        Damping means dissipation of energy, but this concept is slightly different depending on 

whether the damping is absolute or relative. In other words, mass/frame motion or mass/mass 

motion. 

 

        Specifically, the effect of absolute damping has a permanent nature, or in other words, 

the energy dissipation in the form of friction regardless of system operation whether in steady 

or transient cases. Therefore, the mechanical efficiency is directly affected by absolute 

damping as in bearing oil film damping, electrical damping and fluid damping. This interpret 

why the absolute damping has little magnitudes in comparison with the values of relative 

damping because any of these magnitudes will influence directly the power generation 

efficiency. 

 

        The relative damping has no effect when the system is in steady-state operation, and 

seems to be very effective when the system pass or exposed to any type of transient cases, 
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such as loading or unloading and in the case of faults. The main types of the relative damping 

are the material damping, gear mesh damping and sliding friction of gear system damping. 

 

System Eigen Values (Torsional Natural Frequencies) and Eigen Vectors (Mode Shapes) 

 

System Eigen Values 

 

        Generally, it can be said that the eigen values of the system in operation (load is 

connected) becomes larger than the eigen values of the inoperative system (load is 

disconnected), especially for the three modal dominant eigen values. Loading connection 

means the addition of electrical stiffness (Ke) to the model, which represents the conjunction 

between the turbo-generator unit and the network. This interprets the change in eigen values. 

 

         Table (5) shows the first three torsional natural frequencies for a conservative system. 

They liable to be indirectly excited by unbalance or directly torque changes (e.g. dynamic 

torques ) as the unit is running up from standstill to around 314.16 rad/sec (3000 rpm) which 

represent the operation  speed of the generator. 

 

        Table (6) shows the first three torsional damped frequencies for a non-conservative 

system. Here, free vibration decays due to damping action. Decaying is an indication of 

system stability. Generally the conclusion which can be drawn is that the eigen values of the 

system are decreasing due to damping action, and increasing when the system is in operation 

under loading conditions. 

 

System Eigen Vectors (Mode Shapes) 

 

        The mode shapes show the relative angular displacement of each lumped mass including 

blades with respect to angular displacement of lumped mass number one (stage number one of 

the compressor). For the disconnected load condition (figure 10), two rotor nodes observed 

for third mode (ω1 = 285.83 rad/sec). On the other hand, one node is observed only for the 

intermediate mode (ω2 = 90.468 rad/sec). The first mode has no apparent nodes (ω1 =8.0053 

rad/sec), this means that the whole rotor moves as a rigid body because there are no nodes and 

hence no relative displacement between lumped masses. It may be noticed that high modal 

damping are relatively for the first and second mode in the two cases of loading and 

unloading condition when compared to that of the third mode (ζ=0.036). This suggest that the 

prime torsional vibration appears for this mode. Existence of rotor nodes is very beneficial 

because rotor nodes mean no torsional vibration at node location and hence no relative 

angular displacement. Determination of these rotor nodes locations gives a good guidance for 

the designers to select the best locations to install specific parts along the rotor length to avoid 

harmful torsional vibrations. The important observation here is that most nodes locates 

directly on the quill shaft position (between gear and generator or 40 and 41 on the abscissa of 

figure (10) or (11)) or in the vicinity of it. Actually, this shaft is designed and manufactured 

from a material possesses high torsional flexibility to be able to absorb harmful torsional 

vibrations.  

   

           The results, shown in figure (10) represent the load disconnection case. The mode 

shapes in figure (11) illustrate the relative angular displacements of all lumped masses where 
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the load is in connection. All mode shapes in the load connected condition and disconnected 

are approximately similar. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Third mode (no nodes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Second mode-intermediate mode (1-node) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) First mode (2-nodes) 

Figure (10): Mode shapes (load is disconnected)  
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(c): Third mode (no nodes) 

 

(b): Second mode-intermediate mode (1-node) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a): First mode (2-nodes) 

 

Figure (11): Mode shapes (load is connected) 
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Figure (12): Overall block diagram of the simulated power system 
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