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Abstract

In the design stage or analysis of any dynamical system a detailed or
comprehensive model is essentially required. In this work, different parts and
components that are contained in the model of a turbo-generator unit (T.G) for torsional
vibration analysis are considered and the governing equations of which are presented
and developed to estimate their respective parameters. These parts and components are
mainly compressor seventeen stages and blades, turbine two stages and blades,
reduction gear system with the safety shaft, the rotor of the generator, the exciter and
the fluid film bearings on which the whole system is supported. The data upon which the
system model is built are referred to Mosul gas turbine station units. The estimated
parameters are those related to rotational inertia, damping and stiffness effects of the
different components in the system. A detailed model of the system should be useful for
the purpose of torsional vibrational during rotation with normal steady loading or
under severe loading conditions utilizing a block diagram via Matlab. The system eigen
values natural frequencies (critical speeds) and mode shapes are determined.
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Introduction

The main motivation of this work is the need for accurate model of a turbo-generator
unit in gas turbine power stations. These models are essentially needed for transient load
studies or in the analysis of the dynamic behavior of a turbo-generator for torsional vibration
analysis in the unit under severe loading conditions (i.e. electric network disturbances). The
generating units in Mosul gas turbine station has undergone several problems on a number of
occasions due to running with this kind of loading conditions represented by electrical faults.

Building of a dynamical model is the first step in the analysis of a torsional vibration
problems. In the field of machinery dynamics, equivalent inertias, linear torsional springs and
linearized damping coefficient have been used in order to construct a lumped or discrete mass
model.

Evaluation of Dynamic Coefficients

A major task in this work is to evaluate the necessary stiffness and damping coefficients
that are needed in constructing a comprehensive dynamic model of a turbo-generator unit.

Torsional damping is defined as a critical parameter, which cannot, in general, be
reliably predicted by analytical or experimental means. Most of the individual damping
mechanisms are complex and are not presently predictable at the design step  [1].

There are only small damping effects in some of the rotating assembly. These are
considered as negligible, such as oil film damping, gear sliding friction damping and fluid
damping. Significant damping such as the material damping, electrical damping, and gear
damping, may be accounted for.

The analysis, including, station-to-ground viscous damping has been formulated by a
number of researchers in the past and recently [2, 3, 4].

Damping is the most critical parameter which is difficult to estimate. Viscous damping
results from the shearing of a fluid (lubricant) in the gap between the moving parts are
considered to be a linear function of relative velocity [5].

Damping is often a non-linear phenomena, it has been standard practice to linearize the
description formulae as in gear damping, bearing oil film damping and electrical damping. On
the other hand, when the non-linear fluid damping is linearized it employs an equivalent
viscous damping [6].

The purpose of this paper is to built a complete torsional vibration model of a turbo-
generator unit for Mosul gas turbine station in conjunction with the electrical network. This
type of model should be useful in investigating and analyzing the dynamic behavior of a
turbo-generator unit under normal and severe loading conditions or sudden electrical network
disturbances which causes the consequences of the mechanical failures in the couplings and
rotating segments. The rotational critical speeds of the unit may also be predicted.

Model Description and Mathematical Formulation

Introducing linear stiffness and viscous damping into a dynamical system results the
following vector-matrix equation of motion:

(M [6] + (©f6] + (K)[6] = [T] (1a)
0 is the angular perturbation vector of the segment lumped masses and the blade masses.
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Describing the system dynamics in a state-space form the above equation may be
reformulated to be:

[X] = [A][X] + [B][U] (1b)

Here, [X] is the state vector comprises the deviation angular positions and velocities, [U] is
the input vector, matrices [A] and [B] are the proper system and input matrices respectively.

The homogenous case of the above state space-equation is:
[X] = [A][X] (1c)
may be used to determine the system eigen values and eigen vectors from the determinant:
[Al—A] =0 (1d)

Here A is the system matrix which contain elements related to the inertia, damping and
stiffness matrices system.

In this system, the turbo-generator unit comprises a gas turbine of open cycle type with
single shaft arrangement that contains 17-stage axial compressor and 2-stage axial turbine
with multiple combustors. These stages are connected to the reduction gear system by a gear
coupling and two rigid flanged couplings. The gear system consists of a pair of involute spur
gears. They are connected to the AC generator (alternator) by a highly flexible spline shaft,
named as quill shaft giving a mechanically limited safety device of the unit under overload
conditions. The quill shaft is connected to a rigid flanged coupling. The operating speed of
rotation of the compressor-turbine set is 5100 rpm, while that of the exciter-generator set is
3000 rpm. The whole system is illustrated in figure (1).

|<7W pinion shaft 4"

Journal bearings
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- J Gear coupling
4

& o= — oo e
N - === o -
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Figure (1): The turbo-generator unit (system studied), drawing not to scale

The system model may be represented by a collection of lumped masses, springs and

dampers.
The governing differential equations of motion for a shaft segment and a jth blade of
compressor and turbine, figure (2), can be written in terms of angular variation about the
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steady state operating angular deflection and their derivatives to give the effective angular
velocities and accelerations. They are as follows:

(Ceij

(Co)ignr

Figure (2): Rotational inertia-damper-spring model of tuned compressor and turbine

bladed disk, (i=1 to no. of stages=19, j=1 to no. of blades in each stage = ny,)

]miéi = _KSi (el - ei+1) - CSi(éi - éi+1) - nbiKbi (91 - ebl) - CBiéi (2)
[i=1]
]biébi = —Kbi(ﬂbi — 61) — Cfiébi [|:1 to 19]

(Including equations 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39)

Jmie, 0141 = —Ks, (8141 — 6)) — K., (8141 — 0i12) — Cs, (0541 — 6;)
—Cs,,, (641 = 0i42) =1, Kp,, (B — Op,, ) [i=1to 17]
(Including equations 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36)

Jmiy, Oia1 = —Ks, (8141 — 0)) = K, (Biy1 — 0i42) — Cs, (8141 — 6))
—Cs,,, (6141 — 0542) —np,, Kp,,, (6141 — Op,,,) — Cp,6; [i=18] (38)

]mpép = _K519(eP —619) — C519(GP - ég) - (CBs + CB4)éP - CFP(GP - ég) — Ty (40)
Jmgfg = —Ks,0(8g = 820) — Cs,0(8g — B20) + Cry (65 — 6p)

—(Cgg + Cg,, + Cp, + Cy)0g + SR. Ty (41)
]mzoézo = —Kszo(ezo - eg) - K521(920 —031) — Cszo(ézo - ég)

—C521(920 —0,1) — (CBg + CBlo)GZO — Ceb20 — Kebyo (42)
]m21é21 = —K521(921 —020) — C521(921 - é20) (43)
4
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Where T, is the dynamic torque induced in gears, ny, is the number of blades in each stage,
Ky, Is the torsional stiffness of any turbine or compressor blade, and SR is the gear ratio.

The comprehensive model of the system including the electrical network
interconnection to the system which is linked by an equivalent electrical stiffness is presented
schematically in figure (3).

E3
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Figure (3): Mass-damping-spring model of the turbo-generator unit

Effect of Backlash

Backlash is commonly found in gears and similar mechanical linkages where the
coupling is not perfect or continuously provided. In a majority of situation, backlash induces
additional dynamic forces.

The dynamic equations of a gear system, during meshing, depends on four situations, as
illustrated in figure (4) :

(i) If 6p—0y>By then Ty=Kgy(0p—0g)+ Cq(6p—0y) (44)

(i) If Bg>0p—06; > —Bg then Tqg = 0.0 (loss of contact) (45)
This occurs between points 2 and 3.

(iii) If ©;—0p>Bg then Tyq=Ky(0; —6p) + Cy(B; — 6p) (46)
This occurs between points 3 and 4.

(iv) If O8p—6g=Bg or 8p — 0y = —Bg then Ty = 0.0 (loss of contact) (47)

Where Bg is the backlash.
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These four situations are considered and T,=K.(6, -6.)
introduced in the dynamic equations of RN L
pinion and gear in the present multi mass- 1
spring-damper model, hence in the
simulation block diagram of the system.

Figure (4): Gear teeth backlash model 3 0 B, 0, -8,)

In developing equations (2) to (43), several assumptions are employed:

(1) Mistuning (variations in the dynamic properties of the blades) is ignored.

(2) Each blade of compressor and turbine is considered as one mass, flexibly attached to
the shaft segment.

(3) Blades motion is independent of each other in each stage (i.e., no coupling between
blades along the shaft exists).

(4) The shaft of the unit does not actually constitute a perfectly rigid connection between
different components. As a good approximation, the rotor of the single component is
divided into a number of segments. Each segment considered as a rigid lumped mass,
torsionally connected through elastic elements of negligible masses. Each stage of
turbine and compressor is connected to ny, blades through elastic elements also. The
whole system (mechanical part including compressor and turbine blades, gear system)
and the (electrical part including generator and exciter) produces 23 masses connected
by 22 springs. In turn, each of compressor and turbine stages connected to ny, blades
by ngp, springs for each stage.

(5) Low contact gear ratio is used in the analysis. Specifically, the contact ratio is taken
between one and two.

Estimation of Stiffness and Damping Coefficients

The following analysis is used to determine the linear or linearized estimation of the
stiffness and damping coefficients appeared in the primarily derived equations (2) to (43).

Stiffness Coefficients

1. Shaft Segment Stiffness Coefficients ( K )

Generally, for a stepped shaft segment having any number of steps, the equivalent
stiffness (where the diameter and length of each step is not the same) is represented
equivalently by:

1 1

1 1 1
= bt
(Ksdeq Ks; Ks, Ksg Ksnge

(48)
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The shaft segment stiffness can be given by the following standard expression:

Ks =22 (N.m/rad) (49)
Then,
(Ksl)eq - 1D1.<13/L1 Jnl.é/Ll JD3.2/L3 o m (0)
Or
(Ks)eq = 32|Ly Ly .13 ..y st G
nG|pt 'pf bt DE,

Where ng, is the number of steps in shaft segment, L is the segment length, J is the polar
moment of inertia of segment section, G is the torsional rigidity of segment material, and D is
the segment diameter.

2. Gear or Mesh Stiffness (Kg)

Reducing the speed of the turbine in the unit to that of the generator requires a gear
system. Motion and torque transmission is achieved by permanent teeth contact. However,
this arrangement is to some extent, elastic.

Yang and sun [7] derived an approximate, linear expression for the elastic force
between single pair of steel gears teeth along common tangent to base circles as:

= T _ g .8 (52)

T 4(1-v2) T 8

Where & is the magnitude of the interpenetration between two meshing teeth, or relative
displacement between two teeth, L is the thickness of the teeth (face width), E is the Young’s
modulus of the gear material, v is the Poisson’s ratio of the gear material, K is the linear
mesh stiffness of the contact (N/m).

This expression has been derived according to hertzian law for elastic materials.

An approximated, linear expression for the elastic torque between the same pair of gears
teeth has been obtained as compression between two isotropic elastic bodies.

nELR{‘;avge K
4(1-v2) ~ ¥

§ (53)

Where Rbavg is the average radius of base circles of two gears, 6 is the relative gear
displacement between two teeth, and Kg is the angular mesh stiffness (N.m/rad).

Variable Mesh Stiffness

Although, the stiffness during the contact of a single pair of teeth is considered as a
constant, equation (53). It cannot be guaranteed that this will still be held for the entire gear
motion. [7]. The stiffness of contact will change with the number of meshing teeth gear pairs
during motion. This number alternates between one and two. Figure (5) shows a pair of spur
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gears with involute profile in
mesh. Assuming that, this pair
of teeth comes with contact
starting at point B, and
separates at point B; , where B,
and B; are both on the common
normal line. Three periods exist
in terms of the number of the
contact teeth pairs (contact
ratio):

Figure (5): Geometrical relationships of

Base Circle,

teeth contact [7]

(A) FromB,toA, Oz
In this region the
preceding pair of teeth are still in contact, so we have two pairs of teeth in contact.
Since the area of contact is doubled, it is reasonably, believed that the stiffness of
hertzian contact ratio doubled. In this case, the stiffness is considered to be twice of
that given by equation (53). i.e.
nELRﬁavg
8 2(1-v2) (54)
(B) From A,to A
In this region, the preceding pair of teeth has already separated, yet the succeeding
pair has not come in contact. Therefore, we have a single pair of teeth in touch. In this
case, the stiffness (K, ) given in equation (53) holds.
(C) From A;to B,

This region is the same as that in situation A, except that this pair of teeth becomes the
new preceding pair, and another
new pair of teeth starts contact in

the region of B, A,. DOUBLE TO¢ 7 &
In fact, three regions of contact
exist. Figure (6) illustrates the B Ai p/ A (B1)
fluctuating characteristics of these =
three regions of meshing.
Here, for simplicity, the average AT AN
value of this stiffness is used. It is taken as
the sum of the discrete tooth stiffness values  gjgyre (6): Alternation of the number
over mesh cycle divided by the number of of contact pairs [7]
mesh positions in the cycle [8, 9], i.e.,
5TELRp
g)avg [(Kg) +(Kg) +(Kg) ] Tv;\)g (55)

8

B1i(A:)
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3. Electrical Stiffness (K,)

When the energy conversion from mechanical to electrical form or the reverse takes
place at a constant speed of the rotor in any synchronous machine (generator or motor) [10],
The electrical torque:

(T.;)= - the mechanical torque (T,,e)

The negative sign indicates that when T, Is positive, Ty,e IS negative  (motor mode)
and when T, is negative, Ty, is positive (generator mode)
When the speed rises, the instantaneous electrical torque T, and the instantaneous
mechanical torque Ty, are related as:

Jgen % = Tme — Ter = T (Generator mode)

Where Jgep is the is mass moment of inertia of the generator rotor, w, is the angular speed of
the generator rotor, T, is the accelerating torque.

Cleary, when the generator is accelerating, the mechanica I torque T, should be larger
than the electrical torque Tg;. On the other hand, the power developed by the generator per
phase is given by, [10]:

VaVe .
Piey = )ETytsm b =Ty 0 (56)

Where Vj; is the induced or internal voltage per phase, V; is the terminal voltage per phase,
Xsy Is the synchronous reactance per phase, and ¢ is the power angle between V,, and V; .

Hence,

__ V§i.Vesing

Ty = (57)

Xsy.(.or

This expression represents the electrical torque in its non-linear form.
The following approximate analysis has been done by Nasar and Unnewehr [10], to

evaluate the electrical stiffness (K.), and it will be adopted in this work.

For two-pole, cylindrical-rotor, and assuming that the frequency of mechanical
oscillations is small, so that the steady-state power angle characteristics can be used, the
equation of rotational motion of this synchronous generator is:

]gen Oy = Tme — Tl (58)
Where 6,. represents the angular displacement of the generator rotor.

Let the changes in 6., T,; and T, caused by sudden load changes be represented by
A8, AT, and AT, respectively, so that equation (58) modifies to the following:

dZ
(Tgen @)Aer = ATpe — AT (59)

The change in the electrical torque, from equation (57), is the following,
AT, = ;:;—Itrsin[Aq)] (60)
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Where Ty is the electrical, electromagnetic or air gap torque, and w, is the rotational speed of
the generator rotor = synchronous speed or electrical frequency under steady state conditions,
w, = mN,/30 (rad/sec).

It may be noticed that for constant voltages, only angle (¢) changes when load changes.

For small variations sin[A¢d] = Ad , therefore, equation (60) becomes:

ATe = Ke Ad (61)
Where

_ Vi Vi
Ke =3l (62)

Which represent the electrical stiffness per phase. For 3-phase operation, the electrical
stiffness is given by:

Ke = 3075 (N.2 (63)

Xsy Or "rad

Estimation of Damping Coefficients
1. Material Damping (Cy)

Materials damping capacity is defined as “internal
hysteresis” which is the property of a material which
produces internal dissipation of energy under cyclic
deformation [11].

The internal damping capacity of materials can be obtained
from the stress-strain diagram shown in figure (6).

] Figure (6): Hysteresis loop [11]
The complete diagram form a closed loop the area

of which represents the energy dissipated in overcoming the internal friction of the material.
This energy appears largely in the form of heat.

Damping in the elastic shaft elements between rigid lumped masses is due to the shaft
material. Defining the critical damping (C,.) and damping ratio () as:

Cc=2]nwy (64)
And g = (65)

Where C is the material damping coefficient.

Therefore, Cs=20]non= 20 ]Jn ;(—s

This yields,

Cs =20 vV Ks Jm (66)

10
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Shaft material damping can be
estimated by considering that the J | — |
damping exist between any two o .
adjacent segments in a manner similar J Ce K

s S
to that connecting two inertias as
shown in figure (7). The damping
coefficient can be approximated by
[12]:

Cs=2 G 2V Ks (]meff)s (67)

Where  (Jm,,)s Is effective inertia of the two adjacent masses at two ends of the shaft
segment that can be calculated as:

Figure (7): Two inertias with stiffness and
dampina

Jm Jm
]meff =—= (68)

]m1+]m2
Substitute equation (68) into equation (67) to get the general expression of the material
damping coefficient:

Co=2 g |-mulm: (69)

]m1+ ]mz

Where ( is the damping ratio of shaft material.
Experiments have shown that (s ranges between 0.005 to 0.075 for steels [7].

2. Mesh Damping or Gear Damping (Cg)

When two elastic bodies impact each other, most of the elastic strain energy is restored,
but a fraction of which will be dissipated in the form of heat due to random molecular
vibration. This energy loss can be considered as a damping effect during impact [13].
Generally, the damping coefficient is represented by (equation 67):

Cs =20K]
Then, the damping coefficient of any two meshing gears due to impact between their
teeth can be represented by:

Cg =2 Zg\/(Kgl)avg(]meff)g (70)

Where (g is the is the damping ratio of gear material, (Kg"),yg is the gear or mesh stiffness,
Um,)g is the effective inertia of two meshing gears with speed ratio (SR).
Umgge)gears Can be expressed by the following expression:

— _JmptImg
(]meff)gears - (SR)ZJmp+Img (71)
Therefore,
_ ’ _ JmptImg
Cg — 2 (g (Kg )an (SR)Z -]mp'l']mg (72)

Where ], and Jn,g is the polar moment of inertia of pinion and gear respectively
11
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Measurements have shown that, ¢, ranges between 0.03 to 0.17 [14, 15].

3. Sliding Friction Damping in Pinion and Gear (CFp, CFg)

This type of relative damping occurs due to frictional forces of the driving and driven
gears. Figure (8) shows the engagement of pinion and gear teeth. The normal force F,,. is
acted along the common tangent to base circles and the friction force Fg is acted along the
common tangent to teeth which is perpendicular to base circles common tangent. Using the

following relationship:

Fr = 1 Fhor (73)
The friction torques along the common tangent to pitch circles are,

(TF)pinion = Fgsiny Rp = WFyor siny Rp (74)

(TF)gear = Fpsiny Rg = PFpor sinP Ry (75)

Where s is the pressure angle, R, and R, are the pitch radii of pinion and gear respectively

The frictional force losses o, / : /§
during the engagement of two gears \ /& 7
arise from two types of relative \// / § g‘
motion, namely, sliding and rolling /; &
of involute teeth with respect to each R, /¢ g

other. In all other positions,
however, the meshing action is a

combination of rolling and sliding. -, F, | T,
Since rolling is considerably smaller R r '/
than the sliding resistance, its v == 4 Sl
contribution to the total friction is 0 = 1 : -
usually ignored [15, 16, and 17]. : \\/]' s T

Sliding friction in gear mesh /IR e
has an effect on the system ge F e e e
dynamics as a source of energy o \ P,
dissipation [18], in other words, it /W
can influence the system with its / o,
damping characteristics [19]. 7 I <

Buckingham [20] has [ <+
developed a semi-empirical formula o\
for the average friction coefficient (
Mayg) aS: Figure (8): Dynamic model of a gear pair

operating with sliding friction
Mavg = 0.05e7%125V5 10,002 /(VS)avg (76)

12
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Where (VS),yg is the average sliding velocity in (ft/min), alternatively, Buckingham

formula stated earlier can be rewritten using SI units, when the average sliding velocity (VS)
in (m/s) as:

Mavg = 0.028 /(VS)avg (77)

The losses in gearing due to relative rolling motion, by using this approach, were
completely disregarded. Examples on this approach have been presented in the literature
[21, 22].

Now, the average sliding velocity is given by the following expression:

(VS)avg = (VSapr+VSrec) (78)

2

Where VS, is the approach sliding velocity, and it is given by:
VSapr = (wp + wg). AP (79)

Also VS, Isthe recess sliding velocity:
VSrec = (0p + wg).PB (80)

After substituting equation (79) and (80) into equation (78), the average sliding velocity
can be obtained in terms of path of contact (AB) and the average angular velocity (w,yg) as:

(Vs)avg = AB. (wavg) (81)
Where

AB=AP+PB (82)
And

Wavg = “p:“’g (83)

Where w,, wg are the angular velocities of pinion and gear respectively, AP is the path of
approach, and PB is the path of recess.

Substituting equation (81) into equation (77) to get:
1

Mavg = 0.028 VAB w2, (84)

The frictional torques (TFpand TFg) are obtained by substituting equation (81) into
equations (74 and 75) as follows:

1
TFp = [0.028VAB wgvgl Fror Rpsin¥ (85)
1
TFg = l0.0ZBVAB mgvgl Fror Rgsin¥ (86)

Since Fpor, sin¥, Ry , and R, are constants, the friction torques TFp and TFg become
only functions of the average angular velocities (w, and wy).

13
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Let
K; = Fpor Rp sinyg (87)
K, = Fpor Rgsin¥ (88)

Then equations (85 and 86) can be written as:

1
T, = Ki lo 028VAB wavgl (89)

Try, = Ko l0028\/_ oo l (90)

These expressions are non-linear form of TFp and TFg . The linearization of these
expressions gives the damping coefficients of frictional moments in pinion and gear (CFp and
CFg ) as following:

a TFp
ATFp = ’6 ave i A (J‘)an = CFp A (Davg (91)
Also
TFg
ATFg = ’0 ave i A (J‘)an = CFg A (Davg (92)
Then,
0Tk 0Ty
— p — g
CFP_|6w ! CFg_ ow
avgly avglj

Where Cg and Cg, are constants represents the slopes of the curves of T versus w,yg
p g p
and Tr, VErsus wayg at the reference positions.

Therefore,
_ 0.014 VAB m
Cr, =Ky [ o N.E/sec (93) _
_ 0.014 VAB m
Cr, = Ky [ Jomg N'E /sec (94)

4. Bearing Oil film Damping Coefficient (Cg)

The turbo-generator unit has ten journal bearings. Journal
bearings or fluid film bearings play a significant role in the
vibrational behavior of the rotor, both laterally and torsionally.
Generally, the frictional forces in journal bearing may be .
obtained from fluid shear stresses at journal and bearing ‘
surfaces, i.e., for Z=0 and Z=h respectively as shown in figure

9).

w

Figure (9): Journal bearing
14
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In steady running, the total drag or frictional force for both surfaces due to rotation is

given by [23, 24]:
CLeW . 2 URL
FB = 2€R sin @ + (11_T§2)—1/2(]:3L (95)

The above relationship consists of two parts, the first part arises from the offset
between the center of the shaft and that of the bearing. The second part is based on Newtonian
friction.

Where w is the load on the bearing, € is the bearing eccentricity ratio (e = e/CL), e is the
eccentricity, Lg is the bearing length, CL is the radial clearance, ¢ is the attitude angle of the
bearing, R is the bearing radius, and & is the absolute viscosity of the bearing oil, figure (9).

Frictional torque = frictional force*journal radius. This gives,

_ _CLeW . 2mEURLg
Tg = Fg.R = TR SIne + -1z L (96)
But the linear velocity is U = w.R .
__CLew . 2mEURS3 Lp
Therefore, TB = 2R sin@ + (1_62)—1/2(21‘ (97)

The first part of equation (97) is independent on the speed of rotation (w). The frictional
torque represents a source of dissipation of energy and hence provides a damping action. This
equation is the non-linear form of that frictional or damping torque. The oil film coefficient is
obtained by linearizing this equation as the following:

ATy = |"ﬁ Do = Cp Aw (98)

0w

Where, Cg is a constant represents the slope of the curve of Ty versus w at the reference
position.
Then Cg =

2mEUR3 Ly

(1—-€2)1/2 CL (99)

5. Electrical Damping (C,)

Alternating current generators (alternators) and motors have practically no-self damping
capacity. The damping of an alternator is due to current induced in the pole faces of the rotor
by the movement of the flux to and fro across the pole face during oscillation. In certain
circumstances, this damping can become negative, in which case the system will become
unstable resulting in a large growth of oscillatory amplitude if there is insufficient positive
damping in the system as a whole. It is usual, therefore, to supplement the damping
characteristic of the machine by special damper winding, embedded in the pole faces. The
lower is the resistance of these windings the greater is their damping effect. These windings
are similar to squirrel cage induction motor winding and sometimes called amortisseur [11].

As approximate expression for the specific damping, Wilson [11] has derived torque of
an alternating current machine fitted with damper windings as follows:

In general, the driving torque is proportional to some power of the rotational velocity, i.e.,

Tqr = K w? (100)
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Where Ty, is the driving torque (N.m), w is the rotational velocity (rad/sec) and (K, Z) are
constants.

For small variations of rotational speed, the damping torque per unit angular velocity
(i.e. damping coefficient C,) is the instantaneous slope of the torque-speed curve at the point
of question (reference point),

C. = damping torque/unit velocity = % (Tgy) = Z Kw?? (101)

Substituting the constant, ( K = % ) from equation (100) and after some manipulation we
have the damping coefficient as:

—7Tar 7-1 _ 7Tar _ _2Tar
Ce =12 w?Z w =z ®  2mN/60
Or (o =27 (102)

It may be noticed that since the damping torque is proportional to velocity, the
damping of viscous nature. The value of constant Z in equation (103), in practice, is generally
greater than one, i.e., more than one percent increase of torque is required to produce one
percent increase in speed. The actual value of Z depends on the torque/speed characteristics of
the individual machine.

The electrical damping coefficient of an alternator or synchronous generator can be

estimated from the general equation (103) as:
_ 9.55ZTgen

e
Ngen

Where Tge,, Is the torque driving the generator and N, is the generator rpm.

For normal machines, it may be assumed that 13% to 14% increase of torque is
required to produce 1% change of speed, i.e. Z= 13 to 14 [11], Taking Z = 13.5, therefore,

129 Tgen

(103)

e
Ngen

6. Fluid Damping or Velocity-Squared Damping (C¢)

Velocity-squared damping (non-viscous damping) is commonly used to describe the
damping mechanism of a system vibrating in a fluid medium. The damping force is assumed
to be proportional to the square of the velocity and can be approximated by [6]:

Cbra Apr] .
Fga = 22622032 (104)
Where y is the velocity of vibrating body relative to fluid medium (m/s), Cpr,g is the drag

coefficient (dimensionless), Ap,. is the projected area of body perpendicular to y (m?), and p is
the mass density of fluid (kg/m?).

The relationship y = r,,, 0y, and its derivatives can be substituted into equation (104) to
obtain the damping force in terms of the independent coordinate 0 as:
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Cprag P Apr N 2
Foa = [ 0200 102 6, (105)
Where r,,,, is the mean radius of a single compressor or turbine blade, and 6y, is the angular
displacement of blade center relative to shaft center.

The equivalent-viscous damping coefficient or fluid damping coefficient (Cg) can be
represented by the following relationship:

4
C=Cr= ECDrag p Apr I'mn3 18] wp
O

r
4 K
Ce = chrag p Apr rmn3 || \/1:1:) (106)

Where |0]| is the peak angular amplitude of vibration of blade at resonance (rad), Ky, is the
blade stiffness (N.m/rad), and ], is polar mass moment of inertia of the blade (kg.m?).

Analysis of engine test results and rig investigations has shown that the mechanical
damping (internal material damping) of the blade is small, and that the damping is mainly
aerodynamic (fluid damping) under a constant excitation force. The angular peak amplitude at
resonance |@®| is approximately equal to thirty times the corresponding deflection due to
static load by dead weight of blade [25].

Results

The present work deals with the simulation of the angular motion dynamics of the turbo-
generator unit. Lumped mass system with the inertias of the main parts and the blades and the
dynamic coefficients (stiffness and damping) has been fully predicted. In the present study,
the axial flow compressor consists of seventeenth stages, which is the actual number of stages
in the compressor of any of the twelve turbo-generator units under study of Mosul gas turbine
power station. Also the turbine, which consists of two stages, the pinion, gear and generator
are included so that the integral parts of the unit are simulated. To perform the calculations, a
basic language computer program is developed and the actual data taken from the station
catalogues as listed in table (1), are used in the program.

The data presented in table (2) are inserted into the computer program. These are obtained

either from the available manufacturers data of the units or by direct measurement
accomplished on each part in the absence of the foregoing information.
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Table (1): Summary of the data of the twenty-three lumped mass system of the

turbo-generator unit

Lumped mass hame Mass Number of Approximate Approximate Blade
No. (kg) blades blade thickness blade width height
(mm) (mm) (mm)
1 Compressor stage 1 44 28 6 140 208
2 Compressor stage 2 23 32 45 110 185
3 Compressor stage 3 17.3 36 4 105 164
4 Compressor stage 4 154 40 4 100 144
5 Compressor stage 5 11.9 44 4 78 128
6 Compressor stage 6 12.6 49 4 70 115
7 Compressor stage 7 12.6 54 4 70 115
8 Compressor stage 8 12.6 59 4 70 115
9 Compressor stage 9 12.6 64 4 70 115
10 | Compressor stage 10 12.6 69 4 70 115
11 | Compressor stage 11 12.6 75 4 70 115
12 | Compressor stage 12 12.6 81 4 70 115
13 | Compressor stage 13 12.6 87 4 70 115
14 | Compressor stage 14 12.6 94 4 70 115
15 | Compressor stage 15 12.6 101 4 70 115
16 | Compressor stage 16 12.6 108 4 70 115
17 | Compressor stage 17 12.6 115 4 70 115
18 Turbine stage 1 82.2 90 18 60 95
19 Turbine stage 2 271.1 120 18 60 235
20 Pinion 570
21 Gear 1568
22 Generator 10877
23 Exciter 1221
Table (2): Actual system specifications taken from station references
No. Item Symbol Values Units
1 Compressor shaft outer diameter d 700 mm
2 Rotational speed of gas turbine shaft 5100 rpm
3 Rotational speed of generator shaft 3000 rpm
4 Speed ratio SR 1.7
5 Pinion pitch circle diameter dp 475 mm
6 Gear pitch circle diameter dg 808 mm
7 Gear face width 410 mm
8 Number of pinion teeth 58
9 Number of gear teeth 99
10 Module m 8 mm
11 Rotor generator diameter dgen 764 mm
12 Rotor exciter diameter Dexc 600 mm
13 Rotor exciter length Lexc 550 mm
14 Poissons’s ratio v 0.3
15 Absolute viscosity of bearing oil (4 0.0198171 N.s/m?2
16 Rated power 20 MW
17 Terminal voltage Vi 11000 (L-L) Volt
18 Induced voltage / phase Eg 120 Volt
19 Stator resistance / phase R 0.0122 Ohm
20 Modulus of elasticity of Ni-Cr steel E 208 GPa
21 Modulus of rigidity of Ni-Cr steel G 82 GPa
22 1 per unit torque 1P.U 63622 N.M
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A summary of the calculation results are given in table (3) and (4). The calculations
include effective polar mass moment of inertia of each lumped mass and blade, and the
estimated values of dynamic coefficients (both stiffness and damping coefficients). In order to
estimate the torsional natural frequencies and mode shapes, the system Eigen values and
Eigen vectors are determined depending on the adopted model. The turbo-generator rotor
system as specified has 42 degrees of freedom. By using the state-space technique for the
solution of system equations, the 42 ordinary second order linear differential equations
becomes 84 ordinary first order linear differential equations.

Table (3): Summary of the first set of results of the twenty-three shaft masses used
in the Simulation

Blade stiffness Mass moment of Mass moment of
No. | Lumped mass name (N.m/rad) inertia of lumped inertia of blade (
mass ( kg.m2) kg.m?)
1 Compressor stage 1 10758 41.12 1.978 *10~-2
2 Compressor stage 2 4508 30.41 8.2 *10-
3 Compressor stage 3 3846 28.29 4.85 *10=3
4 Compressor stage 4 4751 26.7 3.126*10-3
5 Compressor stage 5 4690 20.64 1.713*10=3
6 Compressor stage 6 5214 18.45 1.115*10=3
7 Compressor stage 7 5214 18.67 1.115*10=3
8 Compressor stage 8 5214 18.92 1.115*10=3
9 Compressor stage 9 5214 19.15 1.115*10=3
10 | Compressor stage 10 5214 19.38 1.115*10=3
11 | Compressor stage 11 5214 19.66 1.115*10=3
12 | Compressor stage 12 5214 19.94 1.115*10=3
13 | Compressor stage 13 5214 20.22 1.115*10=2
14 | Compressor stage 14 5214 20.55 1.115*10=3
15 | Compressor stage 15 5214 20.87 1.115*10=2
16 | Compressor stage 16 5214 21.2 1.115*10=2
17 | Compressor stage 17 5214 21.52 1.115*10=2
18 Turbine stage 1 596783 32.78 0.364*10-2
19 Turbine stage 2 97528 79 4.1 *10-2
20 Pinion 16.1
21 Gear 134.78
22 Generator 832.3
23 Exciter 54.9

Also, the eigen vectors (natural mode shapes) corresponding only to the modal free
undamped eigen values are shown in figure (10) for the unloading case and figure (11) for the
loading case.

Four cases were studied, these are free undamped and damped vibration when the load
is connected and disconnected from the generator for each case.

The entire results of this analysis show 42 eigen values in the form of pairs of
complex conjugate. The first group of dominant values (the pairs of system modes, or the
first three undamped torsional natural frequencies) of the eigen values are listed in table
(5).The second group of the dominant values (first three damped torsional natural frequencies)
are listed in table (6). The consideration of dominancy were based on the examining the
obtained numerical values of the eigen values. It is noticed that the first three eigen values, in
particular the first one, have eigen sensible differences for the cases considered. On the other
hand, their corresponding natural frequencies are less than the speed of rotation when the unit
is in steady operation, which suggest that their values are critical speeds and has to be
carefully mounted in the running up and shutting down of the unit. The fourth eigen value and
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the rest indicates values higher than the speed of rotation, for example, A,, indicates a natural
frequency of about 738 (rad/sec) for all the cases considered. This frequency is even higher
than the second harmonics frequency of the self induced excitation that may appears in the
generator with steady loading conditions, i.e., [738>2(314)] rad/sec.

dynamic coefficients used in the simulation

Table (4): Summary of the second set of the results of twenty-two shaft segments

Segment Material Bearing oil Electrical Gear Fluid
stiffness damping damping stiffness and damping damping
Segment coefficient | coefficient damping coefficient | coefficient
coefficients Cg
No. | Location Kg Cs Cg Ks and sliding
(N.m/rad) friction Cs
or and damping
Ce coefficients
name (N.m/rad/s) | (N.m/rad/s) | (N.m/rad/s) (N.m/rad/s) Crpand Cg,g (N.m/rad/s)
(N.m/rad/s)
1 1-2 1.1*10u 99986 0.164 0.5987
2 2-3 1.1*10u 93373 0.164 13237 1.23* 101 0.4394
3 3-4 1.1*10u 91173 0.19 0.39
4 4-5 1.1*10u 84331 0.19 0.3624
5 5-6 1.1*10u 79198 0.425 3001 1.49 0.296
6 6-7 1.15* 101 77141 0.425 0.3323
7 7-8 1.15* 101 77141 0.236 0.3667
8 8-9 1.15* 101 77141 0.236 2.53 0.4032
9 9-10 1.15* 101 77141 0.486 0.4417
10 10-11 1.15* 101 77141 0.486 0.4824
11 11-12 1.15* 101 77141 0.5252
12 12-13 1.15* 101 77141 0.5703
13 13-14 1.15* 101 77141 0.6176
14 14-15 1.15* 101 77141 0.6671
15 15-16 1.15* 101 77141 0.719
16 16-17 1.15* 101 77141 0.7732
17 17-18 3.7 108 4205 0.8298
18 18-19 1.2* 1010 23142 15.74
19 | 19-pinion 3.9%10° 431 24.8
20 Pinion- 1.23* 101 61445
gear
21 Gear- 5.25*108 1973
generator
22 | Generator- | 4.032*107 3646
exciter

Table (5): Dominant undamped torsional natural frequencies

Generator condition

Dominant modal free undamped eigen values

(torsional natural frequencies)

(‘rad/sec)

Unloading

A, =0+£8.0053i

A, =0+£90.468 i

A3 =0+£285.83i

Loading

A,=0+13116 |

A, =0+90.936 i

Az =0+ 28584 |
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Table (6): Dominant damped torsional natural frequencies

Generator Dominant modal free damped eigen Modal damping

condition values (torsional damped natural values
frequencies) ( rad/sec) 9

A, =-6.8088 £4.3700 i 0.8400
Unloading A, =-10.846 £ 88.932 i 0.1210
A3 =-10.267 £ 285.60 i 0.0360
A, =-6.9639 +£11.289i 0.5250
Loading A, =-10.960 £ 89.399i 0.1217
A3 =-10.267 £ 285.61 i 0.0359

Discussion and Conclusions
Stiffness Coefficients

It is known that the values of shaft stiffness (Kgs) depend naturally on segment shaft
diameter and length (equation 49). This interpret the equivalent different values of (Kg) due to
different shaft steps of different length and diameter.

The value of gear stiffness (K;) mainly depends upon face width and average base radius
of the two mating gears considering the same material for pinion and gear. It’s estimated
value is seems to be of the same order of shaft stiffness (Ks).

On the other hand, the electrical stiffness (K.) or as sometimes so-called synchronizing
torque depends, purely, on electrical parameters, namely, terminal voltage, excitation voltage,
synchronous reactance and rotational speed of the generator. It’s value is relatively small
compared with the mechanical stiffness K.. The effect of electrical stiffness is introduced in
system equations only when the generator is connected with electrical network, i.e., when the
generator is in operation.

Damping Coefficients

Damping means dissipation of energy, but this concept is slightly different depending on
whether the damping is absolute or relative. In other words, mass/frame motion or mass/mass
motion.

Specifically, the effect of absolute damping has a permanent nature, or in other words,
the energy dissipation in the form of friction regardless of system operation whether in steady
or transient cases. Therefore, the mechanical efficiency is directly affected by absolute
damping as in bearing oil film damping, electrical damping and fluid damping. This interpret
why the absolute damping has little magnitudes in comparison with the values of relative
damping because any of these magnitudes will influence directly the power generation
efficiency.

The relative damping has no effect when the system is in steady-state operation, and
seems to be very effective when the system pass or exposed to any type of transient cases,
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such as loading or unloading and in the case of faults. The main types of the relative damping
are the material damping, gear mesh damping and sliding friction of gear system damping.

System Eigen Values (Torsional Natural Frequencies) and Eigen Vectors (Mode Shapes)
System Eigen Values

Generally, it can be said that the eigen values of the system in operation (load is
connected) becomes larger than the eigen values of the inoperative system (load is
disconnected), especially for the three modal dominant eigen values. Loading connection
means the addition of electrical stiffness (K.) to the model, which represents the conjunction
between the turbo-generator unit and the network. This interprets the change in eigen values.

Table (5) shows the first three torsional natural frequencies for a conservative system.
They liable to be indirectly excited by unbalance or directly torque changes (e.g. dynamic
torques ) as the unit is running up from standstill to around 314.16 rad/sec (3000 rpm) which
represent the operation speed of the generator.

Table (6) shows the first three torsional damped frequencies for a non-conservative
system. Here, free vibration decays due to damping action. Decaying is an indication of
system stability. Generally the conclusion which can be drawn is that the eigen values of the
system are decreasing due to damping action, and increasing when the system is in operation
under loading conditions.

System Eigen Vectors (Mode Shapes)

The mode shapes show the relative angular displacement of each lumped mass including
blades with respect to angular displacement of lumped mass number one (stage number one of
the compressor). For the disconnected load condition (figure 10), two rotor nodes observed
for third mode (w; = 285.83 rad/sec). On the other hand, one node is observed only for the
intermediate mode (w, = 90.468 rad/sec). The first mode has no apparent nodes (w; =8.0053
rad/sec), this means that the whole rotor moves as a rigid body because there are no nodes and
hence no relative displacement between lumped masses. It may be noticed that high modal
damping are relatively for the first and second mode in the two cases of loading and
unloading condition when compared to that of the third mode (£=0.036). This suggest that the
prime torsional vibration appears for this mode. Existence of rotor nodes is very beneficial
because rotor nodes mean no torsional vibration at node location and hence no relative
angular displacement. Determination of these rotor nodes locations gives a good guidance for
the designers to select the best locations to install specific parts along the rotor length to avoid
harmful torsional vibrations. The important observation here is that most nodes locates
directly on the quill shaft position (between gear and generator or 40 and 41 on the abscissa of
figure (10) or (11)) or in the vicinity of it. Actually, this shaft is designed and manufactured
from a material possesses high torsional flexibility to be able to absorb harmful torsional
vibrations.

The results, shown in figure (10) represent the load disconnection case. The mode
shapes in figure (11) illustrate the relative angular displacements of all lumped masses where
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the load is in connection. All mode shapes in the load connected condition and disconnected

are approximately similar.
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eloctrical part

Figure (12): Overall block diagram of the simulated power system
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