
Dawwd: RAM-Based Neural Network Parallel Implementation on a Reconfigurable ---

76

RAM-Based Neural Network Parallel Implementation on a
Reconfigurable Platform and Its Application for Handwritten

Digits Recognition
Shefa A. Dawwd, Ali Al-Saegh

shefadawwd@gmail.com, ali.alsaegh@uomosul.edu.iq
Computer Engineering Department, University of Mosul

Abstract:
Artificial neural networks (ANNs) are widely used in different areas of nowadays
applications. Many challenges are imposed on the practical implementation of ANNs.
Some of them are: the number of samples required to train the network; the number of
adders, multipliers, nonlinear transfer functions, storage elements; and the speed of
calculations in either training phase or recall phase. In this paper, the RAM-based
neural network is investigated. No weights, adders, multipliers, transfer functions are
required to implement it neither in hardware nor in software, but at a cost of large
RAM utilization. In addition, a small number of samples are required for training.
However, in hardware implementation, a large size of memory is required to train it.
The network is implemented on the FPGA platform. The Stratix IV GX FPGA
development board, which is provided on large on board RAM, is used. A considerable
speedup of 237 is achieved in either training or recalling phases. A comparable error
rate of 7.6 is achieved when MNIST (Mixed National Institute of Standards and
Technology) database are used to train the network on handwritten digit recognition.

Keywords: Field programmable gate arrays, handwritten digits recognition, RAM-
based neural network.

تصمیم شبكة عصبیة مبنیة على ذاكرة الوصول العشوائي وتنفیذھا على الوحدات القابلة
بالیدلإعادة التشكیل وتطبیقھا في تمییز الأرقام المكتوبة

علي الصائغشفاء عبدالرحمن داؤود
قسم ھندسة الحاسوب، جامعة الموصل

الملخص: تستخدم الشبكات العصبیة الإصطناعیة في العدید من التطبیقات الموجودة في الحیاة الیومیة. ولكن ھناك الكثیر
بالتالي: عدد النماذج یمكن تلخیص تلك التحدیاتالواقع العملي. ومن التحدیات التي تواجھ تطبیق ھكذا شبكات في

خطیة وكذلك عدد وحدات الخزن المطلوب الغیر لیات الجمع والضرب وعدد الدوال عدد عمالمطلوبة لتدریب الشبكة،
لعصبیة تم في ھذا البحث إستخدام الشبكة االتعامل معھا وتوفیرھا، وسرعة الحسابات في طوري التدریب والفحص.

ذاكرة الوصول العشوائي، حیث أن تطبیقھا عملیا لا یتطلب أوزان أوعملیات جمع وضرب أو دوال تحویل المبنیة على
ولكنھ یتطلب توفیر ذاكرة الوصول العشوائي. تتمیز ھذه الشبكة بالعدد القلیل من نماذج التدریب المطلوبة ولكنھا تكون

وتنفیذھا بإستخدام تم في ھذا البحث تصمیم شبكة عصبیة من ھذا النوع على حساب حجم ذاكرة الوصول العشوائي.
وكانت . تم فحص النظام المقترح في تمییز الأرقام المكتوبة بالید في الحقلمصفوفة البوابات المنطقیة القابلة للبرمجة

.237ومقداره مع تحقیق تسریع جدیر بالإعتبار% 7,6نسبة الخطأ في التمییز ھي

، تمییز الأرقام المكتوبة بالید، شبكة عصبیة في الحقلالمفتاحیة: مصفوفة البوابات المنطقیة القابلة للبرمجةالكلمات
مبنیة على ذاكرة الوصول العشوائي.

Received: 12 – 1 - 2014 Accepted: 14 – 5 - 4

Al-Rafidain Engineering Vol.23 No. 2 April 2015

77

1. INTRODUCTION
Conventional artificial neural networks’ (ANNs) [1-3] constructions are built from the

well-known weighted-sum-and-threshold artificial neurons called McCullogh and Pits which
are comparatively simple processing units. These artificial neurons communicate with each
other through a big set of weighted connections. The artificial neuron is depicted via two
equations (1) and (2), the first one specifies a linear weighted sum of the inputs to the neuron
and followed by the other one which represents a nonlinear activation function.= ∑ -------- (1)= --------- (2)

Where is the activation function, are the weights, are the inputs, specifies the
shape of the output sigmoid, and is the output.

Numerous works proved that this kind of neural networks has a skillful generalization
ability [2]. Nevertheless, the complexity of huge parallel nonlinearity calculations inherent in
such models is a cost for that generalization. In the same context, hardware implementation of
conventional ANNs involves the use of large numbers of adders and multipliers by the
artificial neurons [3] which in turn challenging for entirely parallel implementation of the
networks.

Moreover, training a multilayer neurons demands presenting the training samples in a
repetitive manner in order to achieve suitable neuron weights and this leads to very long
learning time [2, 4]. Implementation of training in hardware systems can be implemented
either off-chip or on-chip [5, 6]. In off-chip learning, the values of weights are calculated
externally by software and are then downloaded to the neural network which is then used only
for recall. This is the easiest but least favored method, since training times can be long. It may
be suitable for networks, which do not need to adapt to new data once trained such as the
problem of pattern recognition or classification, but it is not suited for some other problems
such as data compression. Off-chip learning does have the advantage in that it is easy to
change the learning algorithm simply by modification of software. It also allows the use of
floating point arithmetic for the algorithms which may not be feasible on a neural network
chip. On-chip learning must be seen as the most desirable method, since it may open the way
to stand-alone neural network chips. The main advantage of running the learning algorithm in
hardware is the gain in speed. However, there is a trade-off in flexibility, where
“programming” of the learning algorithm is difficult. Other obstacles to the development of
on-chip learning are the extra chip area used, and the fact that many of the current or popular
algorithms (e.g. back propagation) require global data.

To this end, the aim of this paper is to implement a NN on a reconfigurable FPGA
platform for handwritten digits recognition, and hence looking for a robust and speeding
hardware design is of great importance. However, accomplishing this through ordinary ANNs
sounds to be not a very suitable idea due to the lack of necessary circuit density in FPGA
while this type of ANNs, as it has been discussed earlier, consumes a lot of hardware
resources.

Relying on the previous discussion, it is very important to look for another type of ANN
to obtain a design with a simpler architecture and still has a generalization ability. Therefore,
RAM-based NN has been chosen for implementing the design, whereas it has been proved to
offer fast training and simplicity of implementation [2, 4, 7]. Besides that, training can wholly

Dawwd: RAM-Based Neural Network Parallel Implementation on a Reconfigurable ---

78

be implemented on-chip in low area cost with low control complexity, high precision, and
high performance.

The rest of this paper is structured as follows: Section 2 explains the RAM-based NN and
its advantages over ordinary ANNs, Section 3 shows the designed NN, Section 4 describes the
hardware architecture of the designed NN, Section 65 demonstrates the FPGA
implementation, the results are presented in Section 66, then finally Section 7 concludes this
paper.

2. RAM-BASED NEURAL NETWORK
Also known as n-tuple classifiers, offers keys to those presented problems although it was

not initially aimed for considering that. RAM-based NN is easy to learn where it has the
capability to learn with presenting the training set once only; besides the simplicity of its
hardware which needs only memory slices and counters [2] while the ordinary ANNs needs a
large number of adders and multipliers.

RAM-based NN employs the neurons that
deal with binary input patterns. This network
does not carry any information on its
connections but rather it saves data in Random
Access Memories (RAMs) i.e. inside the
network’s nodes or neurons, therefore, it is a
weightless neural network. In order to learn this
sort of NNs for recognizing different classes of
patterns, it is necessary to construct a number of
logic functions that describe the problem. In the
testing stage, these functions assess true in case
of a pattern belongs to the class that the function
represents and false for all other classes [1, 2].

The 1-bit word RAM node used for
constructing the RAM-based NN is shown in
Fig. 1; the -address lines are connected to a
logical decoder for accessing only one memory
location of 2 available memory locations. It has
a control input as well in order to toggle the
RAM mode between “Write” in the training
phase and “Read” in the testing phase.

The RAM node itself does not perform generalization (delivering the correct output for
unseen patterns in the training phase) while it does produce a correct output for patterns stored
throughout the training phase. Whilst the generalization is introduced by a discriminator
device which is composed of a grid of RAM nodes, refer to Fig. 2. The address lines of each
RAM (a tuple accesses only one of the memory locations in the concerned RAM) in the
discriminator are randomly connected to bits from a binary input pattern (a binary image in
our study), so that a discriminator will consists of RAMs each of bits and the binary
pattern is of size × bits.

Fig. 1. 1-Bit RAM Node. The lines −
for addressing the memory locations[0] − [2 − 1]. The mode line is for
toggling between the write and read modes.

Al-Rafidain Engineering Vol.23 No. 2 April 2015

79

Prior to the training phase, all RAM memory locations must be set to ‘0’. Then, during the
training phase, a ‘1’ is stored in a memory location addressed by an input vector (−).
After training all of the patterns, memory contents will be either ‘0’s or ‘1’s. Normally, each
bit in an input pattern is an input to one RAM only, however oversampling is possible for
improving classification. Afterwards, the stored information is then used for the testing phase.
Here it should be clear that a discriminator is trained on a specific class of patterns, hence a
RAM-based NN with a number of discriminators equal to the number of classes must be
assigned.

When unseen input patterns, which are composed of classes are presented to the RAM-
based NN that consists of discriminators, Fig. 3, all of the addressed memory contents are
read and summed to get a response () for each discriminator. So that represents a counter
for those RAMs with an output equal to ‘1’. The maximum , which is equal to , tells that
the input pattern was presented in the training phase; on the other hand when none of the
RAMs fires ‘1’ (= 0) means that the input pattern did not appear in the training phase. In
between values (0 < <) represent the amount of likeness of the input pattern to the
patterns in the training set [1, 7].

Fig. 2. A Discriminator. It consists of RAMs each of bits input connected to a binary
input pattern in a random manner. The response () of the discriminator represents a counter
for those RAMs with output of ‘1’.

Dawwd: RAM-Based Neural Network Parallel Implementation on a Reconfigurable ---

80

3. DESIGNED NEURAL NETWORK
The MINST data set of handwritten digits has been used. It consists of 60,000 training

images and 10,000 testing images, each image is 28 × 28 pixel.
The designed RAM-based NN is composed of 10 discriminators as there are 10 classes

(digit 0 to digit 9) in the data set. Oversampling has been used by a factor of three in order to
achieve better classification at the end, such that each image is presented three times during
the training phase to the corresponding discriminator. Hence, each of the discriminators is
composed of 147 (3 × 49) RAMs each with 16 address lines (tuple size is 16 bits). Since
each image is composed of 784 pixels, therefore, the number of RAMs needed for each
discriminator is 49 (784 16⁄ = 49), but with the use of oversampling the number becomes
147. All training and testing images were converted to the binary format to be possible
handling them throughout the designed NN. The training and testing algorithms for the
designed NN are given below:

Training algorithm:
1. Read train images and labels.
2. Change the format of images to binary.
3. Set tuple size (16), number of RAMs (147), and number of discriminators (10).
4. Select an image.
5. Specify the appropriate discriminator from the label of the image.
6. Start sampling the image.
7. Select a tuple randomly.
8. Store ‘1’ in the RAM location determined by the tuple.
9. Repeat steps 7-8 until all image’s bits are selected.
10. If the image is sampled for 3 times then continue, else go back to 6.
11. If all images are trained then continue, else go back to 4.
12. End.

Testing algorithm:
1. Read test images and labels.
2. Change the format of images to binary.
3. Tuple size, number of RAMs, and number of discriminators are the same as in the training

stage.

Fig. 3. A -discriminator RAM-based NN. Each of the discriminators can be trained for
recognizing one class of data. Therefore, this NN is able to recognize a classes.

Al-Rafidain Engineering Vol.23 No. 2 April 2015

81

4. Select an image.
5. Start sampling the image.
6. Select a tuple randomly.
7. Increment the response of all discriminators containing ‘1’ in the RAM location

determined by the tuple.
8. Repeat steps 6-7 until all image’s bits are selected.
9. If the image is sampled for 3 times then continue, else go back to 5.
10. The maximum response represents the class of the image.
11. If the class is the same as given in the labels then the image is recognized, else it is not

recognized.
12. If all images are tested then continue, else go back to 4.
13. End.

4. H/W ARCHITECTURE
Unlike the traditional neural network node, each pattern that is to be classified using

RAM-based NN requires storage elements that distributed in tuples. To improve the
performance and achieve fast response time, each tuple should be accessed individually. This
can be realized only by using separated memory banks (since that each memory can only be
accessed once every clock cycle). However, to classify patterns, a huge number of memory
banks (×) are required. That may seem impractical.

One memory location traditionally is composed of multiple bits (width of RAM). To cope
with the problem mentioned above, in these paper memory banks of -width are used.
Then, tuples (RAM banks) of -width can be used to classify classes of patterns. Each of
the RAM columns is now connected to a discriminator. A -bit RAM representation can be
seen in Fig. 4.

Training traditional neural network requires updating weights in each training iteration.
As mentioned earlier, floating-point computations, which are difficult to be implemented in
hardware, is required to update weights in high resolutions. Since, the RAM-based neural
network is weightless, then the training is very simple to be wholly implemented in hardware.

ck-1[2N-1]    c1[2N-1] c0[2N-1]

ck-1[2N-2] . . . c1[2N-2] c0[2N-2]

 . . .  
.
.    . .
.

ck-1[1] . . . c1[1] c0[1]

ck-1[0] . . . c1[0] c0[0]

Address
Decoder

IN

I2

I1

class k-1 . . . 1 0

Mode(R/W)

o/p

Fig. 4. -bit RAM. Each column is reserved for one class of data. Each column is connected
to one discriminator.

Dawwd: RAM-Based Neural Network Parallel Implementation on a Reconfigurable ---

82

This can be achieved simply by bitwise
writing a ‘1’ to specific tuple locations
(“writing” mode is selected).

After training, each column of RAM
preserves a one-class bits representation of
input patterns. -RAM banks each of -
column preserve the entire bits representation
of classes.

The RAM-based NN are now ready to be
used as a general classifier. The complete
architecture of the system proposed in our
work is shown in Fig. 5. In this figure, one
can see that instead of using -adders, each oflog bit width, a set of -counters(, , … ,) are used. Each counter can
count up to value. The bit width of each
counter should be approximated to the nearest
power of two number to the value of log .
All counters work in parallel.

5. FPGA IMPLEMENTATION
As it is noticed in the last section, memory RAMs are the main components of the neural

architecture. All referenced trained patterns that are to be classified are stored in RAMs and a
huge amount of RAM banks is required to store them.

Present FPGAs are usually made of reconfigurable logic blocks combined with fast access
memories (RAM blocks) and high-speed arithmetic circuits. FPGAs have very limited
amounts of on-chip RAM. For implementing large RAM, three options are available. These
depend on the amount of memory required. The first option is the logic blocks themselves,
which can be configured to act like RAMs, but this is usually an inefficient use of the logic
blocks which should be left to be used for arithmetic calculations. The second option is the
use of the embedded RAM blocks of tens of kilobytes. If the required size is in megabytes,
then the external RAM is a better solution. Most of FPGA boards are provided with such huge
size of external RAM, which can be operated at a very high bit rate.

If the embedded RAM block size is enough to accommodate the training patterns, then
they can be used as the main storage device of the proposed network. Although that
number of RAM banks exceeds the available RAM blocks provided by most of the FPGA
models, therefore, in this paper, single address space is shared with all available RAM Blocks
(BRAM). Then, and according to the size of BRAM, multiple tuples may share the same
BRAM. An interleaving technique is used to address the available BRAMs with single
address space (see Fig. 6).

In Fig. 6, it can be noticed that instead of using tuple each of one separated BRAM, in
the above scheme all BRAMs are shared for all tuples.

RAM bank 1 (k-bit width)

RAM bank 2 (k-bit width)

RAM bank M (k-bit width)

0 . . . 1 1

1 . . . 0 0

0 . . . 0 1

+ . . . + +

+ . . . + +

C0C1C k-1

Maximum Unit

class r

1I


2I


MI


M banks of RAM s

Fig. 5. The complete architecture of RAM-
based neural network classifier. banks of

RAMs are reserved for tuples and
counters are used each for one class.

, , … , are addresses each comprises
pixel values of one specific region of the

input image.

Al-Rafidain Engineering Vol.23 No. 2 April 2015

83

Now, when the image that is to be
trained or tested is applied, RAM
locations are provided by tuples in
parallel. Then, each tuple is applied to
the address decoder serially using
parallel to serial convertor. The
address pattern is now available to
determine the location that is to be
updated (in training session) or that is
to be read (in testing session). This
address comprises (+ log) bits.
It is partitioned into two parts
(according to the type of interleaving
either low or high order). A number of
bits are applied to the multiplexer to
determine the BRAM model, and the
rest of bits determine the location
within the model. One RAM access
cycle is required to access each tuple
location. For tuples, cycles are required.
If the training patterns require to be stored in a RAM of size out of the available RAM blocks,
then the on board external RAM can be used as an alternative option.

During the testing phase, the bits width output of each tuple is distributed among the
available counters. Then each counter updates its value according to the state of the bit that
specified to it.

After clock cycles, the results of all used counters are concurrently buffered onto the
input of the maximum unit.

The essential components of the maximum calculation unit that is shown in Fig. 7 are:
storage registers, counters, and comparators. These components are controlled to give the
final output after a number of clock cycles depending on the number of input registers. The
maximum unit searches for the maximum value among all its inputs. The compare unit is
based on a sequential search algorithm. A bits register is provided in the output. The
detected class () is determined by the position of the bit that set to one among the other zero

RAM Block1

RAM Block2

RAMBlock m

1I


2I


MI


Multiplexor

se
ri

al
-

to-
pa

ra
lle

l D
ec

od
er

A
dd

re
ss

sI


.

.

.

bi
ts

s bi
ts

t

bi
ts

t)-
(s

Fig. 6. Serial mapping of an interleaved RAM
Blocks. According to the interleaving scheme, the
output of the address decoder is divided into two

groups of bits: & − depending on the available
RAM Blocks.

k-bits

start signal

es
in

pu
t v

al
u

bi
ts

)
-

(nk

bi
ts

)
-

(
ue

ou
tp

ut
 v

al
k

end signal

Fig. 7. The maximum unit. values input, one value output of bits: one bit is set among
other all zeros.

Dawwd: RAM-Based Neural Network Parallel Implementation on a Reconfigurable ---

84

bits.
6. EXPERIMENTAL RESULTS

Some of the MNIST samples are shown
in Fig. 8, where ten examples are presented
for each handwritten digit. It is clear that
each digit occurs in different shapes in terms
of rotation, scaling, transformation, and even
the font style. Which may lead to ambiguity
in some cases during the recognition
process?

The best results on MNIST were obtained
by training the designed NN with only 6,000
images with test error rate of 7.63%.
Training the NN with less number of samples
returns more test error rate, which can be
interpreted as still not adequate training
samples are presented to the NN. Also
training the NN with more number of
samples returns more test error rate, which
can be interpreted as the locations of RAMs
became saturated, and hence the NN cannot
discriminate between patterns. Results of test
error rate as a function of training samples

are shown in Fig. 9.
The experiential results have been chosen to describe some features of the hardware model of
RAM-based neural network using Stratix IV GX FPGA board.

Fig. 8. Samples of MNIST data set. Ten
examples are presented for each handwritten
digit. It can be realized that each digit may
occurs in different shapes in terms of rotation,
scaling, transformation, and even the font style.

Fig. 9. Test error rate as a function of training samples. The best recognition is obtained when
the NN is trained with only 6,000 samples. Whilst training the network with more or less than6,000 samples yields less recognition rate.

Al-Rafidain Engineering Vol.23 No. 2 April 2015

85

All the following results are based on the network parameters that gives the maximum
recognition accuracy (# tuples= 147).

Table (1) summaries the recourses utilization for the main components of the designed
network that is shown earlier in Fig. 5. From the table, one can see that the slices consumption
is very small in comparison to the memory required, which comprises the major block of the
proposed architecture.

Table 1. Resources Usage
Block LE RAM (MB)

-Counter 70 0
Max unit 61 0

Interleaving components 45 0
Tuples RAM 0 12

Moreover, one can see that the logic elements consumption is very small in comparison to
the memory required, which comprises the major block of the proposed architecture. Since
that the size of the required RAM is in megabyte, then the third option mentioned in Section 5
is followed. The Stratix IV GX FPGA development board, which is provided on large on
board memory, is used as a target FPGA design platform.

The device is provided with a about of 14 M bits of on chip memory that distributed
among 1235 and 22 block RAMs of two models, 9 Kbits and 144 Kbits respectively. The size
of the on chip memory is small enough to accommodate the required tuples RAM presented
in Table (1). Fortunately, the device is provided with a total of 650 M byte of external RAM
which can be accessed by FPGA. Only 12 M byte of it is consumed for tuple RAM.

The time required to train the network as a function of training sample in either software
based implementation-using MATLAB or hardware based implementation using FPGA is
shown in Fig. 10. The computer system that is employed for this work is equipped with an
Intel Core2 Due CPU of 2 GHz, 3 MB L2 Cache, 3 GB of DDR2 400MHz physical memory,
and running Windows 7 Ultimate 64-bit and Matlab 2009a.

Although that the system can operate with a maximum frequency of 112.638 MHz, but
the operating frequency of the FPGA device is 50 . Thus, the processing time depends on

Fig. 10. Elapsed Training Time. Left: the required training time as a function of training
samples using FPGA. Right: the required training time as a function of training samples using
Matlab.

Dawwd: RAM-Based Neural Network Parallel Implementation on a Reconfigurable ---

86

the actual frequency rather than the maximum one. However, from Fig. 10, it is noticed that a
considerable speed up of about (237) is achieved even when the device is operated on
50MHz. The recognition time of the proposed model is the time of mapping one image into
the hardware architecture presented in Fig. 5. For the FPGA model operating in 50 , the
recognition time equals to 3 μ .

A comparison of the network proposed in this paper with other works in terms of
recognition error rates for MNIST data set for handwritten digit recognition is presented in
Table (2). In this table, one can see that the error rate of our proposed network is reasonable
for the following reasons: the network is trained using few numbers of training samples
(6,000 training samples out of 60,000) and are tested using 10,000 samples and gives a
relatively moderate error rate; no preprocessing is used, each training sample is presented
directly to the available tuples; The invariant property of rotation, scaling and translation are
considered in most of handwritten digit recognition systems (such as the Convolutional
Neural Networks), in our proposed network, neither of them is considered.

Table 2. Comparison of results with other studies

7. CONCLUSION
A RAM-based logical neural network with 10 discriminators has been designed and

implemented in FPGA. It has been used for the recognition of MNIST handwritten digits.
Taking into account the simplicity of the designed NN and the few number of training
samples it requires in comparison to other types of NNs, RAM-based NN has achieved very
good results. Moreover, it has been shown that the required time for both training and testing
phases is relatively low.

However, the lack of the proposed NN can be represented in two things. The first thing is
the saturation of memory locations which happens after training large number of samples and
this may lead to ambiguity in some cases during the recognition process. The second thing is
the relatively large size of required memory for implementing the proposed NN. These two
issues may be considered in the future studies.

REFERENCES
[1] I. Aleksander, M. D. Gregorio, F. M. G. França, P. M. V. Lima, and H. Morton, "A brief

introduction to Weightless Neural Systems," in European Symposium on Artificial Neural
Networks, Belgium, 2009, pp. 22-24.

[2]J. Austin, "A review of RAM based neural networks," in Microelectronics for Neural Networks
and Fuzzy Systems, 1994, pp. 58-66.

Classifier Preprocessing Training
set

Testing
set

Test Error Rate
(%)

Linear classifier (1-layer NN) [8] None 60,000 10,000 12.0
Linear classifier (1-layer NN) [8] Deskewing 60,000 10,000 8.4

RAM-based logical NN None 6,000 10,000 7.63
Pairwise linear classifier [8] Deskewing 60,000 10,000 7.6

Convolutional net Boosted LeNet-4 [8] None 60,000 10,000 0.7
Large convolutional net, unsupervised

pretraining [9] None 60,000 10,000 0.39

Al-Rafidain Engineering Vol.23 No. 2 April 2015

87

[3]N. Nedjah and L. Mourelle, "Reconfigurable hardware for neural networks: binary versus
stochastic," Neural Computing and Applications, vol. 16, pp. 249-255, 2007.

[4]C. Badue, F. Pedroni, and A. F. D. Souza, "Multi-label Text Categorization Using VG-RAM
Weightless Neural Networks," in 10th Brazilian Symposium on Neural Networks, Brazil, 2008, pp.
105-110.

[5]K. P. Lakshmi and D. M. Subadra, "A Survey on FPGA based MLP Realization for On-chip
Learning," International Journal of Scientific & Engineering Research, vol. 4, pp. 1-9, 2013.

[6]D. Maliuk and Y. Makris, "A dual-mode weight storage analog neural network platform for on-
chip applications," in IEEE International Symposium on Circuits and Systems, Korea, 2012, pp.
2889-2892.

[7]T. B. Ludermir, A. d. Carvalho, A. P. Braga, and M. d. Souto, "Weightless neural models: a review
of current and past works," Neural Computing Surveys, vol. 2, pp. 41-61, 1999.

[8]Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document
recognition," Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998.

[9]M. A. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, "Efficient learning of sparse representations
with an energy-based model," in Advances in neural information processing systems, 2007, pp.
1137-1144.

The work was carried out at the college of Engineering. University of Mosul

