
Fpga Design And Implementation

Of A Scan Conversion Graphical Sub-System

Fakhraldeen H. Ali Amar I. Dawod

Department Of Computer Engineering

University of Mosul

Abstract

One Major modeling primitive in the field of Computer Graphics is
a planar polygon. This polygon can have an arbitrary number of vertices
and different shapes. In this paper a graphic sub-system is designed and
implemented using Field Programmable Gate Array
(FPGA). One of the main tasks of the hardware designed is scan-
converting convex planar polygons required to update an image in the
image memory or video RAM which is used as a Frame Buffer. A facility
to read the pixels (Picture Elements), from the frame buffer, for display
on the monitor of the computer is also included in the design.

Keywords: frame buffer, scan-conversion, polygons, pixels, FPGA

منظومة رسم فرعیةكوحدة تحویل مسحتنفیذ وتصمیم

مجة حقلیاالبوابات المبرباستخدام

فخر الدین حامد علي عمار ادریس داؤد

قسم ھندسة الحاسبات

جامعة الموصل

:الخلاصة

 .
ذ عدداً عشوائیاً من الرؤوس ھذا البحث تم تصمیم و في . أشكال مختلفةوھذا المضلعّ یمُكن أنَ یأَخُ

 .

) (ل.
. ذاكرة الصورة وعرضھا على شاشة الحاسوب

1- Introduction:

One of the main effective means for communication is the picture.
Computer graphic is an exiting growing field for visual communication.
Nowadays computer graphic finds roots in diverse areas of application
such as education, research, medicine, training, business, advertisement,
and entertainment. Some of the most sophisticated computer graphics
systems are those being used for producing video images in real time.
This requires downloading repeatable tasks on the hardware [1][2].

Received 19 April 2007 Accepted 10 Nov. 2007

In raster graphic, the operation of creating an image in the frame
buffer memory is termed scan conversion. After transformation, the
projected visible parts of a three dimensional (3D) object are scan
converted. The scan conversion produces pixels which are stored in the
frame buffer from which they are then taken, using read cycles, for
display [3]. Scan converting of an image is simply accomplished by
modifying the intensity of all corresponding pixels in the frame buffer
memory. This requires access to the frame buffer a huge number of times
which makes it essential to adopt a fast scan conversion algorithm for real
time graphic systems [1]. The frame buffer is a RAM memory which can
be represented as a rectangle matrix of pixels in which two dimensional
images are stored. Each pixel consists of a fixed number of bits defining
the color resolution of the system. These pixels are normally displayed
by a raster technique where the information is fed to the screen as a
series of horizontal lines [2]. A basic raster display system contains a
frame buffer memory, a graphic controller, a refresh controller, and a
monitor (refer to Fig (3)) .

The refresh controller access the frame buffer periodically to obtain
the data necessary to refresh the monitor and display the image stored in
the frame buffer. The graphic controller accesses the frame buffer to
update the image. The basic operation of the graphic controller is scan
conversion of the image into a set of pixel intensity values for storage in
the frame buffer [4]. The tradeoff between the access of the refresh
controller and the access of the graphic controller is a key idea for the
architecture of many graphic systems [5]. The current design, as shown in
Fig (3), overcomes this problem by using dual port frame buffer memory.

The main function of the scan conversion unit is to resolve each
polygon (which is a planar face) into its constituent pixels and store
them into the frame buffer memory. This unit receives a high level
description list of the polygons, called display list. The scan conversion
unit needs to clip these polygons to the required screen while they are
being scan converted. This can be achieved by a hardware clipper [6][7].

The hardware clipper is a two dimensional automatic clipper which
operates at a fast speed compared to any software clipper. A rectangular
clipping screen or window can be defined by four clipping registers
where each register is loaded with a boundary value it represents. Each
polygon is decomposed into horizontal lines when it is scan converted
and each line is tested against the screen borders. These portions of
horizontal lines which are inside the screen are drawn and those which
are outside the screen are discarded. On the other hand, horizontal lines
which are above or below the clipping window are entirely eliminated.

After introducing scan conversion a review of some related published
works is thought useful. In 1987 the researcher Roman P.Molla
designed three systems with different algorithms to implement a scan
conversion unit for a straight line segment using serial processing
and parallel processing. The paper discussed the performance ,
cost and the error ratio for the three designed systems [8]. In 1993
Andreas Schilling and Wolfgan Straber introduced an algorithm that
deals with hidden surface elimination problem at pixel level. The
hardware implementation was divided into three stages, for
pipelining, to improve the performance. The architecture designed
used 12000 gates and the performance is claimed to be 20 M pixel/sec
[9]. In 1994, Molnar et al has introduced a classification of
different architectures that implement the scan conversion
operation using parallel processing depending on the basic stages
of image generation. These stages are fragmentation stage in which the
scene is divided into a group of small parts to implement the scan
conversion on them later, the assignment stage where parts of the scene
are allocated to the parallel processing units and finally defragmentation
stage , where the partial results are collected and then stored in
the frame buffer[10]. In 1996 C. Scott Ananian and Greg Humphreys
suggested three different architectures to implement ray tracing
algorithm. The designed hardware includes two units. The first unit is
responsible for the implementation of the scan conversion operation, the
second unit is a ray casting unit. The paper discussed the performance
and cost for the three designed architectures [11].

In 2004, David Harris discussed the performance of the OpenGL
lighting unit which is responsible for light simulation and brightness. The
paper introduced a hardware implementation for using integer
mathematics and the architecture consisted of multipliers and look up
tables[12]. In 2005 a group of researchers (Praveen Bhaniramka, et al)
working in Silicon Graphic Company, introduced a real time graphic
system which is mainly managed by the OpenGL library. The system is
splitted into four parallel units each operates as a distinct part to generate
the desired scene. In addition to that, the pipeline technique is
implemented in each unit. However, the paper discussed the performance
of the library in real time graphic systems[13].

2- Scan Conversion algorithm (for a planar polygon):

The calculations performed in scan conversion take advantage of
various coherence properties of a scene that is to be displayed. What we
mean by coherence is simply that the properties of one part of a scene are
related in some way to other parts of the scene so that the relationship can
be used to reduce processing. This involves incremental calculations
applied along a single scan line or between successive scan lines. In
determining edge intersection, we can set up incremental coordinate
calculations along any edge exploiting the fact that the slope of the edge
is constant [7][14]. Figure 1 shows two successive scan lines crossing the
borders of a polygon. The slope of each polygon boundary straight line
segment can be expressed in terms of scan line intersections:

M= (Yk+1 - Yk)/(Xk+1 – Xk) ……. (1)

Scan line Yk

Scan line Yk+1

Figure (1) A polygon scan conversion (up to down)

K: is a counter

Since the change of the y coordinate between two successive scan
lines is simply :

Yk+1 – Yk=1 ………(2)

The new intersection x value is determined from the X intersection
value Xk of the preceding scan line as :

Xk+1 = Xk + 1/M …….(3)

Each successive X intercept can thus be calculated by adding the
inverse of the slope and rounding the result to the nearest integer value
noting that the slope may be negative or positive depending on which is

greater (Xk+1 or Xk). The increment of X by the amount 1/M along an
edge can be accomplished with integer operations by recalling that the
slope M is the ratio of two integers (S*dy/dx) where dX and dY are the
difference between the edge endpoint X and Y coordinate values and S
decides if the increment or decrement operation is required to X
coordinate value.

dx=x2-x1 if x2 > x1 and S = 1 ………(4)

dx=x1-x2 if x1 > x2 and S = -1 ………(5)

Thus incremental calculation of X along an edge for successive
scan lines can be expressed as:

Xk+1 = Xk + S*dx/dy ………..(6)

Using this equation, we can perform integer evaluation of the X
intercept by initializing a counter to 0, then incrementing the counter by
the value of dx each time we move to a new scan line. Whenever the
counter value becomes equal to or greater than dy, we increment (or
decrement depending on the sign of S) the current X intersection value by
(1) and decrease the counter by the value dy. This procedure is equivalent
to maintaining integer and fractional parts for X intercept and
incrementing the fractional part until we reach the next integer value [6].

The algorithm should begin by ordering the polygon sides on their
Y value. It starts with the smallest Y value and scan down the polygon,
and should construct edges table for storing the slope of each edge [7].

Figure 2 illustrates a flowchart for the implemented scan- conversion
algorithm.

3- Hardware design :

A block diagram of the designed graphical unit is illustrated in
figure (3). The graphic controller is interfaced to both the display list
memory and to the frame buffer. The graphic controller reads a display
list of polygons which are scan converted and the pixels outcome are
stored into the frame buffer. The whole image is updated when all its
visible polygons are scan converted.

Start

Load the vertices of the polygon

Construct edge table and sort the edges

From YMIN Down to YMAX

Set first edge, dxl=dx1,dyl=dy1

Yc=Ymin, dxr=dx2, dyr=dy2

dxr=dx2,dyr=dy2Set first scan line

Clip current scan line against y

Calculate the two intersection points x1, x2 from XincL ,
XincR , SL, and SR

Xc =x1

Clip the current X Using hardware clipper

Store pixel in the Frame buffer

Xc= xc + 1

2

Check if Xc
reaches X2 ?

No

No

Yes

Yes
Check for last

line
1

Set new scan
line

Figure (2) Scan-conversion algorithm

Where : dxl & dyl for the left side, dxr & dyr for the right side , Xc is
moving x , from x1 to x2, Yc is current y.

Check if
table end

?

End

Set new edge

Yes

No

1 2

Check

The side
edge?

Left Right

Dxl =dxn

Dyl =dyn

Dxr =dxn

Dyr =dyn

Fig (3) Hardware graphic sub-system

The arithmetic section of the implemented graphic controller searches the
polygon vertices to determine the smallest y coordinate and compute the
slope of each polygon edge connecting this vertex to the preceding and
succeeding ones. From these slopes the graphic controller determines the
intersections of each scan line with the polygon edges which in turn
define the beginning and end of each span. The polygon border calculator
passes the information of each span to the hardware clipper, the hardware
clipper clips each span to the screen using clipping registers.

The graphic controller computes the corresponding address value of the
frame buffer using x, and y coordinates. Figure (4) shows a block
diagram of the designed graphic controller.

Address

Address

Data

Refresh

Controller

Monitor
Dual port

Frame

Buffer

Display list

Memory

Data

HSAdd.

Data
Graphic

Controller

VS

Fig. (4) The designed graphic controller

The refresh controller generates the necessary address and control
signals for interfacing the frame buffer to a raster monitor. It generates
vertical synch and horizontal synch to scan the monitor, in synchronism
with the address, to access the frame buffer. So pixels are read from the
frame buffer and applied to the Monitor. The address is synchronized
with V synch and H synch, to ensure that the pixel is applied to the

Controller unit and

arithmetic Section

Refresh

Counter

Intersection

Border

calculator

Adder Adder Adder

Horizontal

Line

Drawer

Adder

Comparator

X2 X1 Yc

X
Y

Comparator

Hardware

Clipper

Shifter

Adder
Address

Vertices

Registers

Address and Data to the

display list memory

Data

electron gun of the monitor at the correct time [4]. Figure 5 shows a block
diagram of the designed refresh controller.

Fig (5) Refresh controller hardware

A dual port RAM (or Frame Buffer) provides two sets of data
ports one set is used for reading and the second for writing (refer to Fig 3
and Fig 6). The refresh controller uses one for reading data to refresh the
monitor, and the graphic controller uses the other port for writing to
update the image in the frame buffer[15].

Each port can be used independent of the other while accessing the
data memory cells. Each port is fully synchronized with an independent
clock. All input pins of port A have setup time referenced to the CLKA
pin and its data output bus DOA is time referenced to the CLKA. All

Hs Vs

Address

Horizontal

Counter

Clear count

CLK

Vertical

Counter

Clear count

CLK

VCHC

Shifter

Adder

Comparator

Comparator

Signal

Generator

input pins of the port B have setup time referenced to the CLKB pin and
its data output bus DOB is time referenced to the CLKB [15]. Table 1
shows the logic of the control signals and mode of operation.

Fig(6) Dual port RAM

CLK
(A or B)

EN SSR WEA/
WEB

DOA/
DOB

Operation

0 X X No
Change

No
operation

1 1 X Set Set

1 0 0 Change Read

1 0 1 No
Change

Write

Dual port

RAM

WEA
ENA

SSRASSRA

CLKAADDRA

DIA

WEB
ENB

SSRB
CLKB
ADDRB

DIB

DOA

DOB

Table (1) RAM control logic

4- Performance Results :

The performance speed of the scan conversion unit is affected by
the number of visible polygons and their areas in a scene. Many ways can
be adopted to specify the speed of the implemented scan conversion unit.
One of these methods is computing the speed with which this unit can
write pixels into the frame buffer. The Max speed of the scan conversion
unit is 50 M pixel per second, i.e the unit takes 20 ns to write one pixel
in the frame buffer. Another way, the speed is reported is the number of
erasing or clearing the frame buffer
(clearing the screen) which means setting each pixel color to the
background value. The size of the frame buffer is 64 K pixel, in case 256
* 256 resolution, which is required to be written to clear the frame buffer.
So computing this speed for the implemented scan conversion unit gives
a value of 763 number of clearing the screen per second. In the third
method, the number of polygons scan-converted per second, which is a
measure of the image complexity, provides an excellent indication of how
well this unit operates. The polygon shown in figure 7 is used to carry out
such measurement.

The scan conversion unit converts successive
polygons, each is shifted one pixel down and one pixel to the right. The
designed scan conversion unit is able to scan convert (54,945) polygons
per second. Table 2 below, shows the parameters values of the designed
and implemented scan conversion unit.

Fig (7)
Measurement polygon

Area is

30*30
Pixels

Samples of the hardware performance waveforms are given in
figure(8) and figure(9). As shown in figure(8) the input of two line end
points are initialized and then the Graphic Controller computes the
difference between the edge endpoint coordinate values(dx , dy), and
calculates the error to evaluate the change of the y coordinate and x
coordinate at each step. In figure (9) the inputs are the vertices of a
polygon where the Graphic Controller arranges the data input to
determine the first scan line and then calculates the span of current scan
line (Xmin , Xmax) to fill it with pixels.

Frame buffer:

designed

used

640*480 pixels

256*256 pixels

Pixel frequency 25 MHZ

Horizontal display 0.0256 ms

Horizontal retrace 0.0064 ms

Vertical display 15.36 ms

Vertical retrace 1.312 ms

Scan conversion speed 50 M pixel per
second

No. of clearing the creen 763 times/sec

Number of polygons

(30 x 30 pixels)

54,945
polygons/sec

Table (2) Parameters value

5- Conclusions:

1- A scan conversion algorithm is designed in a way suitable to be
implemented in hardware.

2- The hardware designed consists of two main sections, one for updating
the image, and the other for refreshing the monitor. The transfer of
graphical data from the first part to the second is accomplished
(asynchronously) through the frame buffer memory which is dual ported
to increase the data speed.

3- To correlate the calculated speed of the scan conversion unit which is
50 M pixel/sec with the measured speed (54,945) polygons/sec (each has
30x30 pixels), the total number of pixel is calculated for the second and
compared with the first. Such calculations show that the speed 50 M
pixel/sec is reduced to 49.3 M pixel/sec because the scan conversion unit
losses some available write cycle due to the time required to perform
some internal processes before producing data information at its output.

Fig(8) Sample waveforms for a line generation.

4- A simple and fast clipper, being implemented in the software, replaces
a complex and slow software clipper. However, the scope of its
performance is bounded by the capacity of the clipping registers.

5- The performance speed can be further improved using higher
frequency version of FPGA.

6- The resolution is limited by the available RAM and can also be
improved using FPGA version with higher capacity of internal RAM.

Fig (9) Sample waveforms for a polygon generation

References:

[1] Basma Mohammed-Kamal , “ Depth –Buffer for 3D Graphics “,
B.Mc. ,Electronic and Communication Dept of Electrical Engineering
College ,Mosul University,1999.

[2] Stefan Schlechtweg,),”Non-Photorealistic Computer Graphics
Modeling, Rendering and Animation” ,assistant professor at the
University of Magdeburg (Germany ,(2005).

[3] Jones Gomes “ image processing for computer graphic”,

(1999), Prentice Hall International , Inc,ch7.

[4] Edward Angel , “ Interactive Computer Graphic , A Top- Down
Approach Using

OpenGL “ Third Edition 2003,ch1,3.

[5] Jeremy W. Sheaffer1,Kevin Skadron ,” Characterizing Architectural
Vulnerability ardware”, Dept. of Computer Science, University of
Virginia (2006).

[6] Donald Hearn and M. Pauline, “Computer graphic C version”

Third edition, (1997), Prentice Hall International , Inc,ch3.

[7] F.S. Hill, Jr. “computer graphic using OpenGL “ second

edition , (2001), Prentice Hall International , Inc,ch2.

[8] Roman P.Molla Vaya , “Parallel Fixed Point Digital Differential
Analyzer “ , Computer Journal , Vol. 23, No. 1, pp:46-52, 1987.

[9] Andreas Schilling , Wolfgang Straber , “EXACT: Algorithm and
Hardware Architecture for an Improved A-Buffer”, Computer Graphics,
vol. 27, no. 4, August 1993 (SIGGRAPH ’93 Proceedings), pp: 85–92.

[10] S. Molnar , M. Cox , D. Ellsworth and H. Fuchs , “ A Sorting
Classification of Parallel Rendering ” , IEEE Computer Graphics And
Algorithms , pages 23-32, July 1994.

[11] C. Scott Ananian, Greg Humphreys “A Hardware Accelerated Ray-
tracing Engine” , Princeton University, Computer Graphics (SIGGRAPH
’96 Proceedings), volume 21, pp: 95-102, 1996.

[12] David Harris, “An Exponentiation Unit for an OpenGL Lighting
Engine”, Member, IEEE , IEEE Transactions on Computers , VOL. 53,
NO. 3, March 2004, pp: 251-256.

[13] Praveen Bhaniramka , Philippe C.D. Robert , Stefan Eilemann,“
OpenGL Multipipe SDK: A Toolkit for Scalable Parallel Rendering”,
IEEE Symposium on Volume Visualization and Graphics, PP: 119-126,
2005.

[14] David F. Rogers “ Mathematical element for computer Graphic”
(1997) McGraw-Hill Inc, ch3.

[15] User Manual Spartan-3 FPGA Family: Complete data Sheet, DS099
March 4, 2004.

The work was carried out at the college of Engg. University of Mosul

