for Real time DSP Applications

Ahmad Falih Mahmood
Lecturer
Dept. of Computer Eng. / Technical college

Ahmadalallaf@yahoo.com

Abstract

This paper presents a new, expandable, pipelined linear array
architecture designed for transparently tolerating processor failures for
real-time DSP applications. The proposed system use twelve
TMS320C40 DSP processors (Processor Modules PMs) to construct ten
stages pipelined system with two spare processors (SPs). However, the
system can be expanded to increase the pipeline stages and the
performance, and adding more spare processors to increase the
dependability and reliability of the system. In Proposed scheme, the
system can automatically reconfigure itself in the event of failure in one
or two of its DSP processors and the computations continue unhindered
without noticeable performance degradation. Each DSP processor
communicates with neighboring processors through a high speed
communication ports (commport). Some of these commports in every
processor are used as a bypass links in case of failure of one or two
processors. The system uses the forward-task-shift (FTS) mechanism to
tolerate the fault by assigning the function of the failed processor to the
next fault-free processor.

Keywords- Linear processor array, fault tolerant, bypass links,
pipelining, TMS320C40, DSP processors.

4nad) 5 LaY) Agdlae it pUadY) daaludia (ALY) Jadd) 45 lera

M - 3 gana zelld daa)

Jua gall — A8 A<

LAY

b Cualacgrn sill ALE 5 5 el N 5 L3Y) Clallaal Ahad 38 ghoa By jlere Canall 134 ()
AUail) 238 5l 5 Aalaie) 530) Aalia) Clallaall 5l IS 5 e s ety alisy) ball Jalye 33630

Al AUkl Janing allaall pu
Received 14 Feb. 2007 Accepted 20 Nov. 2007

1.0 Introduction
Fault tolerance in highly parallel processing systems is important in

order to achieve high dependability and sustained high performance
computing. The fault tolerance provisions in the system, have to
incorporate mechanisms to detect and localize errors as well as
mechanisms to reconfigure the system (to isolate faulty nodes), and to
recover from erroneous states,. thus limiting the effect of the fault on
performance.

The fault may be transient or permanent. The transient fault mainly
due to temporary environmental change, and to distinguish between
transient and permanent faults, a typical technique is to perform a limit
number of retry and declare a fault as permanent if it persists beyond on

average duration of transient fault. Pipeline multiprocessor systems
usually have large number of processing elements, so the probability that
some processor fails can be high.

Several techniques have been used in the designs to make the linear
array pipeline system fault tolerance. Some of these techniques employed
switching network [1][2], to achieve fault tolerance in linear array
pipeline system. Other techniques use graph-based bypass connection [3],
or replacement circuits [4]. However most of these approaches involves
incorporating spare processor elements and use large number of external
switches, control processor or complicated control circuit to detect and
locate errors, reconfigure the system and recover from error.

In this paper, we propose a fault tolerance system that can
automatically reconfigure itself in case of fault. Reconfiguration process
In our design in response to any processor fault is easy and can be
performed in a distributed manner without using centralized external host
processor or large interconnection switch. Also the proposed system
performs fault detection protocol implicit within the message transfer
protocol and do not require separate fault detection algorithm. This
minimizes the overhead time cased by fault detection algorithms. The
system uses Texas Instruments TMS320C40 DSP processor as
processing node. The parallel processing capability of the TMS320C40,
which was designed specifically to facilities system reconfigurability,
makes the processor ideal for a parallel processing node and particularly
for scientific and DSP applications. The TMS320C40 contains six built-
in, high speed communication ports (links) and each one may be
configured as an input, output or bidirectional port. In our proposed
scheme we exploits the inherent redundancy links (communication ports)
provided in the TMS320C40 with extra spare processors to achieve fault
tolerance in the pipeline system.

The Paper is organized as follows: section (2) describes the
architecture of the system along with the principle of operation.
Implementation of message transfer protocol between PMs is provided in
section (3). Section (4) and (5) introduce the operation of the system in

normal and fault cases. Section (6) discusses the performance of the
system. Finally, some conclusions of this works are mentioned in section

(7).

2.0 The Proposed Architecture
The proposed scheme uses twelve TMS320C40 DSP processors

connected in a linear array pipelined parallel processing system as shown
in figure (1). The basic configuration of the system consists of ten stages
(one DSP processor in each stage from P1 to P10) .The spare processors
(SP1 and SP2) are linked with the last stage of the pipeline to be ready
for use in event of failure of one or two processors in the basic
configuration.

Each processor in the pipeline use one of their output
communication ports as a primary link to connect it with its successor
processor in the array. And use another two output communication ports
as bypass links to connect it with the two processors that follow its
successor processor. These bypass links are used to connect the processor
to the next processor in the pipeline in case of failure of one or two of
successor processors. Processor P1 is the processor of stage-1 in the
pipeline and also serves as the input node for the pipeline. While
processor P10 is the processor of the stage-10 and also serves as the
output node for the pipeline.

Input Data Source

il

I Shared Global Memory

Primary Link

Bypass Link

Pn DSP Processor

SPn Spare DSP Processor

Fig.(1) Proposed system architecture

All of these comports are configured as input or as output port
depending on the function of that port. For example, communication ports
that link the PM to the successor processors are configured as output
ports. While these communication ports that connecting the PM to their
predecessor processors are configured as input ports.

Since the input and output processors are subject to failure, it is
necessary to be able to input information into the array and out of the
array through more than one processor. For this purpose processor P2 and
P3 have bypass links to the input data source. So that, P2 may be used as

the processor of the first stage and as the input processor (in case of faulty
of P1) and P3 may be used as the processor of the first stage and as the
input processor (in case of faulty of P1 and P2). Processors P8, P9, and
P10 have bypass links connecting them to the spare processors (SP1 and
SP2). By this method, SP1 can be used as the processor of stage-10 and
as output processor if any of processors in the basic configuration is
faulty. And SP2 can be used as the processor of the final stage and as
output processor of the any of two processors in the basic configuration
are faulty. This connection strategy allows the pipeline to continue in the
operation even in the failure any two processors in the system.

P10 and the spare processors (SP1 and SP2) all share a common
global external memory which is used to hold the result of the processed
data. Only one processor uses the shared memory at any time. In a fault
free operation, P10 only use the shared memory. While in case of one
processor fault, then SP1 use the shared memory to hold the result, and in
case of two processor faults the SP2 use the shared memory.

3.0 Message Transfer Protocol
In this section, a message transfer protocol is developed for

transferring messages between processors in the array. The C*40 has six
parallel bidirectional communication ports with built-in arbitration units
to handle data transfer between PMs. For software these commport can
be treated as 32-bit on-chip data 1/O FIFO buffers. Processor read data
from/writes data to commport is simple[5] :

LDI @ Comm_portO_input, RO ; Read data from
commport0

STI RO; @ Comm_port0_output ; Write data to
commport0

Every PM send a message to the following PM using the commport
and receive message from the preceding PM using another commport.
The format of data frame consists of three parts as shown in fig(2). Two
pointers pointing to the frame length and address of the next stage to be
processed and the last part contains the data to be processed. The address

of the next stage is important for the receiving processor to know which
stage must be executed (specialty in case of fault).

Frame Length Address of next stage Oata

Fig (2) Format of the data frame

Each of the TMS320C40 communication port is used in a
unidirectional configuration. Figure (3) is an example of two *C4x DSPs
connected via their communication ports. This simple communication
interface consists of the following bidirectional control and data lines[5]:

e CREQ x : communication-port token request. A "C4x activates this
signal to request the use of the communication-port data bus.

e CACK x : communication-port token acknowledge. A *C4x activates
this signal to relinquish ownership of the communication-port data bus
upon receiving a CREQ x from another *C4x.

e CSTRB x : communication-port strobe. A sending ’C4x activates this
signal to indicate that it has placed a valid data byte on the
communication port data bus.

e CRDY x : communication-port ready. A receiving ’C4x activates this
signal to indicate that it has received a data byte via the communication
port data bus.

e CxD(7-0) : communication-port data bus. This bus carries data
bidirectionally, one byte at a time, between two *C4xs or between a *C4x
and some other device.

TREG1 | »— CREQ4
TACK1 | »—J CACK4
Processor ©T=TRE1 |« » JCSTRE4 Processor
" CRDOY1 -+ »—J CRDY4 e
CAD{7T-0) -t E,' > C1D(7—0)

Fig. (3) ’C4x Communication-Port Interface-Connection

4.0 Operation Of The System In Fault-Free Case
In fault free operation, every processor becomes able to communicate

with its adjacent processor in the pipeline using the primary commport
links. Processor P1 starts processing by taking a new frame of data from
the source and processing stage-1 of the task. After that P1 send the
processed frame to P2 to process stage-2 of the task on frame-1 via the
primary link connecting them and using the message transfer protocol
described in previous section. And P1 proceed directly to receive new
frame from the input data source and execute stage-1 of the task on this
frame. The procedure and then continue through the rest of pipeline
processors using the primary links for communication between
processors. P10 execute the final stage of the task (stage-10) of each
frame and puts the result in the shared memory. In this case (fault free
operation), the spare processors (SP1 and SP2) remain in idle state and
they not share in processing.

5.0 Operation Of The System In Fault Case
There are two main types of fault detection protocols in the

literature: The first is group membership-based [6] and the second is
gossip-based fault detection protocols[7]. In the fist type each node in a
distributed system monitors the state of every other node in the group by
direct communication with it. This is an effective method of fault
detection on small systems, but since it requires all-to-all communication,
network congestion becomes a significant bottleneck as the system
becomes larger. An alternative to group membership protocols, in the
second type of fault detection protocol, each node communicates with a
subset of the other nodes in the system. Its view of the system is
determined by a combination of its own information and that received
from these other nodes. This requires only selected point-to-point
communication. In addition, it is easy to design a hierarchical structure
for the gossip-based protocol. For these reasons, a gossip protocol is more
scalable than a group membership approach and thus, more appropriate
for fault tolerance on a large system. In our proposed scheme, gossip-
based fault detection protocol has been adopted.

The PMs in the system can become faulty or can be repaired on
an arbitrary number of times during the operation. The concept of a “
Forward Task Shift (FTS) “ mechanism is introduced in which the task
of each PM is shifted to the next PM in the pipeline in event of failure in
one of the PMs. And the task of the last PM is shifter to spare PM
without loss or restart the execution comparing with other approaches.
There is no required for a global clock or synchronized clock in the
system. Hence, the fault detection algorithm is embedded in the message
transfer protocol used in the system, which minimize system overhead
due to node diagnosis and avoiding the using of check-pointing or
replication processes.

The following subsections presents the mechanism of using the
gossip-based fault detection protocol in the system to transparently
tolerating the fault in one or more DSP processors in the array.

i) One Processor Fault

Each processor is responsible for monitoring the state of its
neighboring processor by checking the health of its successor processors.
This checking is done implicit during the normal message transfer
protocol by sending a strobe signal (CSTRB*) through the primary
communication link that connecting them as mentioned previously. The
successor processor must respond by sending a ready (CRDY*) signal
within a predetermined time interval. If the strobe signal is acknowledged
by the ready signal, then the next neighbor is still functioning. But if the
sending processor dose not receive the ready signal (CRDY*) within the
stipulated time interval, the processing node concerned is assumed to be
faulty. In such situation, the processor first breaks its connection with the
faulty node and bypassing it by sending a strobe signal to the processor
that follow its faulty successor using the bypass link connecting them. For
example, the bypass link between P1 and P3 is used to link P1 to P3 when
P2 is the faulty processor. Using FTS mechanism, P3 in this case will
execute the task of P2 while P4 will execute the task of P3 and so on. At
last, the spare processor SP1 will enter in the basic configuration of the
pipeline to execute the task of P10 and writes the result in the shared

memory. The time-out periods are determined as a function of maximum
response-ready (CSTRB‘-CRDY*) delay time which depends on the
operating frequency of the processor.

When the PM detecting the fault, issues a FAIL message, identifying
which PM has failed, to the next PM connecting with it. And this
message then propagates only in the forward direction to all the following
PMs. The PMs before the faulty node need not to know which PM
faulty, because failure will not affect on the number of stage that must be
processed. However, the PM that detect the failure in its neighboring PM,
must repeat the test of every and for a limit number of times (for
example; ten times) to see if the faulty node has been repaired (transient
fault). If the faulty PM responds during these retries, then PM that
perform the test will send a REPAIR message to their neighboring PMs to
inform them that the faulty node has been repaired. And this message
propagates in forward direction to every PM in the array and the repaired
PM reintegrated in the system. But if the faulty PM dose not responds
during these retries, it considered as permanent fault, and stopping testing
it.

The FAIL and REPAIR messages consists information about the
address of the faulty node. The FAIL and REPAIR message are important
specially for each spare PM to know when it will enter or exit from the
pipeline. Also it is important to know which PM will be the final stage
and then will use the shared memory to put the result.

In addition to mentioned above, PM2 in the array must monitor the
activity of its predecessor. If a failure occur in PM1 during the
processing, then PM2 will detect that if it dose not receive a strobe signal
from PM1 within the predetermine time interval (which is equal to the
time of processing one frame), in this case PML1 is considered to be fault.
In such case PM2 will use the bypass link to receive the data frame from
the input data source directly and start processing task of PM1. However,

in the event of the fault, the processor that follows the faulty processor
will be in a wait state until it receives a strobe signal and then the data
frame through one of the bypass links connecting it with the predecessor
processor.

Finally, it is necessary that each individual processor in the array
keep updating the information concerning the configurations incurred in
its neighborhood. This information must be updated with any FALL or
REPAIR message and includes mainly which link is used to connecting
it with the adjacent processors and address of the task that must be
processed and address of any faulty PM.

ii) Two Processor Faults

The same protocol in fault detection described in previous section
will be used if two or more processors are fails. And the system will
automatically reconfigure itself to allow the two spare processors to
contribute with the pipeline instead the faulty nodes and SP2 in this
case will serve as the output processor. Fig(4) shows examples of the
data frame routing in the reconfigured array upon the failure of two
processors in different locations in the array. As explained in previous
section, PM3 (in addition to PM2) must monitor the functionality of its
predecessor processor. For example, if PM1 and PM2 are failed, then
PM3 will not receive a strobe signal within a predetermine time interval.
In such case PM1 and PM2 are regarded as faulty nodes. And PM3 use
the bypass link to receive new frame of data from the data source and
start processing task of PML.

iii) Three Processor Faults

There is a bound to the maximum number of faulty processor in the
system such that the pipeline operates correctly without affecting to
number of pipeline stages. This bound depend on the number of the spare
processor and the number and locations of the faults. In present system,
with two spare processors, this bound is determined by two faults.

However, to maintain the same number of pipeline stages as in the basic
pipeline configuration, the number of faulty node should not more than
the number of spare

| Input data source | | Input data source | | Input data source | | Input data source |

v v v v v v v v
| Shared Global Memory | | Shared Global Memory | | Shared Global Memory | | Shared Global Memory |

(a) Processor P9 & P10 (b) Processor P1 & P6 (c) Processor P1 & P2 (d) Processor P2 are fails
are fails are fails & SP1 are fails

Fig. (4) Reconfigured array upon failure of two processors

processors. Also the adjacent faulty nodes (that connected directly one to
another) should be not more than two under any condition. This due to
the limit number of bypass links available in each PM. However, if the
number of faulty processors is greater than the number of spare
processors, then the performance of the system will degraded due to
decreasing number of the pipeline stages.

In present system with ten processors and two spare processors,
failure in three processors, for example, leaves the system with only nine
processors. So that the system can function as a nine stage pipeline unless
that the three faulty processors are adjacent such as (P1, P2 and P3) or
(P2, P3 and P4) or (P3, P4 and P5) and so on . In this case there is no
bypass link can be established to link the processor before the faulty
processors with the processor that follow the faulty processors and the
array is declared failed.

6.0 System Performance Discussion
Failure in one of the PMs will introduce a temporary short delay

(due to fault diagnoses overhead time) and this time is equal to the time-
out period. The overhead time caused by the fault diagnosis is depend to
number of faulty processors. However, fault diagnosis procedure that
adopted in this system is not executed periodically during run-time, but it
performed only during the fault. Therefore this overhead has no
significant effect on degradation of system performance. Also the
overhead time due to fault diagnosis is depending on the location of the
fault. For example, the overhead due to the failure in P1 is greater than

the overhead time due to failure in P2-P10. Since, the overhead of
detecting the fault if the fault occurs during the task processing is greater
than if the fault occurs before the task processing.

In the present proposed scheme (with 12 PM), failure in one or
two PMs does not result in system failure or significant degradation in
performance. Failure in more than two PM will also dose not result in
system failure unless the faulty processors are adjacent. However, failure
in more than two PM will case degradation in the performance because
the last spare PM will then be required to take over the additional
computational task of the failed node.

The overhead time due to reconfiguration is independent of the array
size. Another advantage of our design is the ability, due to its distributed
processing, to handle multiple faults which occur at the same time.
Finally, because of using the inherent communication redundancy of the
TMS320C40, the scheme of fault tolerating offers a reduced hardware
cost and increased system reliability.

7.0 Conclusion
A fault tolerance pipeline architecture based on the TMS320C40

DSP processor is presented in this paper. The system consists of twelve
processing modules to construct ten pipeline stages (one PM in each stage
) with two spare processing modules. The system achieves the fault
tolerance by using the spare PMs and the bypass links. In case of failure
in one of the PMs, the system reconfigures itself and automatically
incorporating one of the spare PMs instead of the faulty PM. The
function of the faulty node is assigned to the next fault-free PM (FTS
mechanism) without noticeable degradation in performance level.

The fault model described in this paper can be applied to cover both
permanent and transient faults. Our approach combines advantages of
using minimum hardware with high performance fault tolerance parallel

processing system. Since the system exploiting the communication ports
of the TMS320C40 to establish the bypass links to limit the fault
tolerance cost without using extra complicated connection, switching
networks, or host processor. Also the fault diagnoses software is
embedded within the message transfer communication protocol to
minimize the fault diagnoses overhead time.

Every PM in the pipeline test the functionality of its adjacent PM by
sending a strobe and receiving an response in predetermined time. The
PM is treated as a faulty PM if it is inaccessible from its former PM. In
general, the system can withstand failure of more than two PMs and still
operate as a pipeline array unless the failed PMs are adjacent. However
and with the using of two spare PMs , failure in more than two PMs will
result in degradation of system performance.

References

[1] R.Mazzaferri and T.M.Murray “ The connection network class for
fault tolerant meshes “ IEEE trans. on computers, Vol. 44, No. 1,
Jan 1995.

[2] ---“Constant time fault tolerant algorithms for a linear array with a
reconfigurable pipelined bus system", J. Parallel Distrib.
Comput. 65 (2005) pp. 374 — 381

[3] N.Tsuda “Fault tolerant processor array using additional bypass
linking allocated by graph-node coloring”, IEEE Trans. on
computers, VVol.49, No.5, May 2000.

[4] S.H. Hasseini “ On fault-tolerant structure, distributed fault diagnosis,
reconfiguration, and recovery of the array processor”, IEEE Trans.
on computers, Vol.38, No. 7, July 1989.

[5] Texas Instruments “TMS320C4X User’s Guide” , Texas Instruments
, may 1999,

[6] K. P.Birman, “The Process Group Approach to Reliable Distributed
Computing”, Communications of the ACM, Vol. 36, No. 12, pp.
37-53, Dec.1993.

[71 R. van Renesse, Y. Minsky, M. Hayden, “A Gossip-Style Failure
Detection Service”, In Proceedings of Middleware 98, 1998.

[8] R.K.Kumar, S.K.Sinha and L.M.Patnaik “A fault tolerant multi-
transputer architecture”, Microprocessors and Microsystems, Vol.17,
No.2, 1993.

[9] M.G. Karpovsky, T.D.Roziner and C.Moraga “Fault detection in
multiprocessor systems and array processor”, IEEE Trans. on
computers, Vol. 44, No.3, 1995.

[10] Racine, LeBlanc and Beilin, "Design of a Fault-Tolerant Parallel
Processor”, 21* IEEE Digital Avionics Systems Conference, Irvine,
CA, 2002.

[11] Tadayoshi Horita and Itsuo Takanami “Full Fault-Tolerant
Processor Arrays Based on the Track Switches with Flexible Spare
Distributions”, IEEE Computer, June 2000, Vol. 49, No. 6, pp. 542-
552

[12] S. Dutt, and J.P. Hayes, “Some practical issues in the design of fault-
tolerant multiprocessors,” IEEE Trans. Computers, Vol. 41, No. 5,
pp. 588-598, May 1992.

[13] Anu G. Bourgeois ,Yi Pan, Sushil K. Prasad “Constant time fault
tolerant algorithms for a linear array with a reconfigurable

pipelined bus system”, J. Parallel Distrib. Comput. 65 (2005) , pp
374 - 381.

