Abstract
Physical therapy is an important form of rehabilitation for patients suffering from a variety of disorders. Since professional physiotherapists are not always available, there is a need to introduce an intelligent system that assets the patients to perform the exercise by themselves. Any evaluation system consists of hardware interfacing, computers, processing, and evaluation tools. These tools made it easier to build methods for automating the evaluation of patient performance and advancement in functional rehabilitation. In this research, about one hundred research papers are classified according to the above-mentioned system parts. The review of current tools for capturing rehabilitative motions shows that the Kinect camera has been used in about 35% of the studies. This review concentrates on using machine learning techniques to evaluate motion in rehabilitation. The most relevant research for physiotherapy evaluation using deep learning have shown that the Convolutional Neural Network (CNN) is widely used by 44% of the researcher. A useful overview the collection of the reference datasets illuminates that the KIMORE dataset is popular and used by 38% as compared with other types of datasets. The advanced literature in the present peer-reviewed paper (2016–2022), includes primary studies and organized reviews.